Änderungen von Dokument BPE 7 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/12/12 18:46

Von Version 53.1
bearbeitet von akukin
am 2024/02/02 15:13
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 54.1
bearbeitet von akukin
am 2024/02/02 15:26
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -76,6 +76,16 @@
76 76  
77 77  (% start="3" %)
78 78  1. Bestimme eine Gleichung von {{formula}}L_k{{/formula}} in Koordinatenform. //(zur Kontrolle: {{formula}}x_1+x_2+\frac{4}{k}\cdot x_3 =4{{/formula}})//
79 +1.Ermittle denjenigen Wert von {{formula}}k{{/formula}}, für den die Größe des Winkels, unter dem die x,,3,,-Achse die Ebene {{formula}}L_k{{/formula}} schneidet, 30° beträgt.
80 +
81 +Zusätzlich zu den Pyramiden wird der in der Abbildung 2 gezeigte Quader betrachtet. Die Punkte {{formula}}A{{/formula}} und {{formula}}Q(1|1|3){{/formula}} sind Eckpunkte des Quaders, die Seitenflächen des Quaders sind parallel zu den Koordinatenebenen.
82 +Für {{formula}}k=6{{/formula}} enthält die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader in einem Vieleck.
83 +
84 +(% start="6" %)
85 +1. Für einen Wert von {{formula}}k{{/formula}} verläuft die Seitenfläche {{formula}}BCD_k{{/formula}} durch die Eckpunkte {{formula}}P{{/formula}} und {{formula}}R{{/formula}} des Quaders. Bestimme diesen Wert von {{formula}} k{{/formula}} //(zur Kontrolle: {{formula}}k=4{{/formula}})//
86 +1.Gib in Abhängigkeit von {{formula}}k{{/formula}} die Anzahl der Eckpunkte des Vielecks an, in dem die Seitenfläche {{formula}}BCD_k{{/formula}} den Quader schneidet.
87 +1. Nun wird die Pyramide {{formula}}ABCD_6{{/formula}} , d. h. diejenige für {{formula}}k=6{{/formula}}, betrachtet. Dieser Pyramide werden Quader einbeschrieben (vgl. Abbildung 3). Die Grundflächen der Quader liegen in der x,,1,,x,,2,,-Ebene, haben den Eckpunkt {{formula}}A{{/formula}} gemeinsam und sind quadratisch. Die Höhe {{formula}}h{{/formula}} der Quader durchläuft alle reellen Werte mit {{formula}}0<h<6{{/formula}}. Für jeden Wert von {{formula}}h{{/formula}}liegt der Eckpunkt {{formula}}Q_h{{/formula}} in der Seitenfläche {{formula}}BCD_6 der Pyramide.
88 +Ermitteln Sie die Koordinaten des Punkts Qh .
79 79  {{/aufgabe}}
80 80  
81 81  {{seitenreflexion/}}