Änderungen von Dokument Lösung Rasenfläche

Zuletzt geändert von Holger Engels am 2024/07/23 08:41

Von Version 22.1
bearbeitet von akukin
am 2024/01/30 18:08
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 20.1
bearbeitet von akukin
am 2024/01/30 18:07
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -26,9 +26,8 @@
26 26  
27 27  Einsetzen von {{formula}}\lambda = 1{{/formula}} in die Geradengleichung {{formula}}g{{/formula}} liefert
28 28  {{formula}}\left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + 1 \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) =\left(\begin{array}{c} 15,6 \\ 4 \\ 1,3 \end{array}\right){{/formula}}
29 +Somit ergibt sich der Punkt {{formula}}Q = (15,6|4|1,3){{/formula}}
29 29  
30 -Somit ergibt sich der Punkt {{formula}}Q = (15,6|4|1,3){{/formula}}.
31 -
32 32  4. Der Winkel zwischen den Richtungsvektoren der beiden Geraden ergibt sich durch
33 33  
34 34  {{formula}}
... ... @@ -45,8 +45,7 @@
45 45  Mithilfe der Skizze ergibt sich der Zusammenhang {{formula}}|\overline{QS}|= \frac{0,2}{\sin(\varphi)}\approx \frac{0,2}{\sin(41\text{°})}{{/formula}}
46 46  und damit {{formula}}\overrightarrow{OQ}-\frac{\left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right)}{\sqrt{12^2+(-4)^2+1^2}} \cdot |\overline{QS}|= \left(\begin{array}{c} 15,6 \\ 4 \\ 1,3 \end{array}\right)- \frac{1}{\sqrt{161}}\cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) \cdot \frac{0,2}{\sin(41\text{°})} \approx \left(\begin{array}{c} 15,3 \\ 4,1 \\ 1,3 \end{array}\right) {{/formula}}
47 47  
47 +Somit ergibt sich für die Koordinaten des Punktes {{formula}}S(15,3|4,1|1,3){{/formula}}
48 48  
49 -Somit ergibt sich für die Koordinaten des Punktes {{formula}}S(15,3|4,1|1,3){{/formula}}.
50 50  
51 51  
52 -