Änderungen von Dokument BPE 7.2 Addition, Skalare Multiplikation, Betrag, Abstand, Strecke
Zuletzt geändert von Holger Engels am 2025/06/18 08:16
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -129,6 +129,49 @@ 129 129 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt. 130 130 {{/aufgabe}} 131 131 132 + 133 +{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}} 134 +Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Mittelpunkts zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 135 + 136 +Alfons glaubt, dass folgende Formel richtig ist: {{formula}}M\left(\frac{x_1-y_1}{2}\Bigl|\frac{x_2-y_2}{2}\right){{/formula}} 137 + 138 +Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}M\left(\frac{x_1+x_2}{2}\Bigl|\frac{x_2+y_2}{2}\right){{/formula}} 139 + 140 +(%class=abc") 141 +1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch den Mittelpunkt der Strecke {{formula}}AB{{/formula}}. 142 +1. Welche Koordinaten des Mittelpunkts berechnet Klara, welche Alfons? Wessen Formel ist richtig? 143 +1. Streiche die falsche Formel durch! 144 +1. Bestimme nun rechnerisch mit der richtigen Formel den Mittelpunkt der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 145 + 146 + 147 +{{lehrende}} 148 +**Sinn dieser Aufgabe:** 149 +* Umgang mit Formeln 150 +* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 151 +{{/lehrende}} 152 + 153 +{{/aufgabe}} 154 + 155 +{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}} 156 +Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Abstands zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 157 + 158 +Alfons glaubt, dass folgende Formel richtig ist: {{formula}}d=\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}{{/formula}} 159 + 160 +Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}{{/formula}} 161 + 162 +(%class=abc") 163 +1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch die Länge der Strecke {{formula}}AB{{/formula}}. 164 +1. Welche Länge des Mittelpunkts berechnet Klara, welche Alfons? Wessen Formel ist richtig? 165 +1. Streiche die falsche Formel durch! 166 +1. Bestimme nun rechnerisch mit der richtigen Formel die Länge der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 167 + 168 +{{lehrende}} 169 +**Sinn dieser Aufgabe:** 170 +* Umgang mit Formeln 171 +* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 172 +{{/lehrende}} 173 +{{/aufgabe}} 174 + 132 132 {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}} 133 133 Die Seitenhalbierende in einem Dreieck verbinden jeweils eine Ecke des Dreiecks mit der Mitte der gegenüberliegenden Seite. 134 134 ... ... @@ -153,4 +153,5 @@ 153 153 154 154 {{/aufgabe}} 155 155 199 + 156 156 {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}