Zuletzt geändert von akukin am 2025/08/14 15:48

Von Version 115.1
bearbeitet von Martina Wagner
am 2025/07/15 06:33
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 109.3
bearbeitet von akukin
am 2024/12/22 17:42
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinawagner
1 +XWiki.akukin
Inhalt
... ... @@ -129,41 +129,4 @@
129 129  1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
130 130  {{/aufgabe}}
131 131  
132 -{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1,K5" zeit="7" cc="by-sa" tags="mathebrücke"}}
133 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Mittelpunkts zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}.
134 -
135 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}M\left(\frac{x_1-y_1}{2}\Bigl|\frac{x_2-y_2}{2}\right){{/formula}}
136 -
137 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}M\left(\frac{x_1+x_2}{2}\Bigl|\frac{x_2+y_2}{2}\right){{/formula}}
138 -
139 -(%class=abc")
140 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch den Mittelpunkt der Strecke {{formula}}AB{{/formula}}.
141 -1. Gib an, welche Koordinaten des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch!
142 -1. Bestimme nun rechnerisch mit der richtigen Formel den Mittelpunkt der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}.
143 -
144 -{{lehrende}}
145 -* Umgang mit Formeln
146 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
147 -{{/lehrende}}
148 -
149 -{{/aufgabe}}
150 -
151 -{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K5" zeit="7" cc="by-sa" tags="mathebrücke"}}
152 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Abstands zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}.
153 -
154 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}d=\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}{{/formula}}
155 -
156 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}{{/formula}}
157 -
158 -(%class=abc")
159 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch die Länge der Strecke {{formula}}AB{{/formula}}.
160 -1. Gib an, welche Länge des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch!
161 -1. Bestimme nun rechnerisch mit der richtigen Formel die Länge der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}.
162 -
163 -{{lehrende}}
164 -* Umgang mit Formeln
165 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
166 -{{/lehrende}}
167 -{{/aufgabe}}
168 -
169 169  {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}