Änderungen von Dokument BPE 7.2 Addition, Skalare Multiplikation, Betrag, Abstand, Strecke
Zuletzt geändert von akukin am 2025/08/14 15:48
Von Version 115.1
bearbeitet von Martina Wagner
am 2025/07/15 06:33
am 2025/07/15 06:33
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinawagner1 +XWiki.akukin - Inhalt
-
... ... @@ -44,7 +44,7 @@ 44 44 Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung. 45 45 ))) 46 46 1. Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit. 47 -1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Erreicht er die Position //(40|130)// bevor Team //Straight// das Kreuzchen //x// bei Boje 2 erreicht, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt? 47 +1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Erreicht er die Position //B,,2,,(40|130)// bevor Team //Straight// das Kreuzchen //x// bei Boje 2 erreicht, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt? 48 48 {{/aufgabe}} 49 49 50 50 {{aufgabe id="In Summe Null" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}} ... ... @@ -97,7 +97,7 @@ 97 97 1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}. 98 98 {{/aufgabe}} 99 99 100 -{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" Zeit="10"}}100 +{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" zeit="8"}} 101 101 Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander. 102 102 [[image:Sechseckvektoren.png||width="250" style="float:right"]] 103 103 ... ... @@ -110,7 +110,7 @@ 110 110 1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat. 111 111 {{/aufgabe}} 112 112 113 -{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}} 113 +{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" zeit="8" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}} 114 114 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt 115 115 {{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}} 116 116 wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet.