Änderungen von Dokument BPE 7.2 Addition, Skalare Multiplikation, Betrag, Abstand, Strecke
Zuletzt geändert von akukin am 2025/08/14 15:48
Von Version 117.1
bearbeitet von Martina Wagner
am 2025/07/15 07:11
am 2025/07/15 07:11
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 103.2
bearbeitet von Holger Engels
am 2024/11/15 18:42
am 2024/11/15 18:42
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Objekte (1 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinawagner1 +XWiki.holgerengels - Inhalt
-
... ... @@ -6,8 +6,8 @@ 6 6 [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors als seine Länge interpretieren 7 7 [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden 8 8 9 -{{aufgabe id=" Additionund Subtraktion" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}}10 -Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{ matrix}1\\3 \end{matrix}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{matrix}-2\\1 \end{matrix}\right){{/formula}}9 +{{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}} 10 +Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}} 11 11 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch: 12 12 (% class="abc" %) 13 13 1. {{formula}}\vec{a}+\vec{b}{{/formula}} ... ... @@ -16,38 +16,43 @@ 16 16 Prüfe dein zeichnerisches Ergebnis durch Rechnung. 17 17 {{/aufgabe}} 18 18 19 -{{aufgabe id=" SkalareMultiplikation" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}19 +{{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}} 20 20 Zeichne ein zweidimensionales Koordinatensystem. Ermittle jeweils zeichnerisch: 21 21 (% class="abc" %) 22 -1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{ matrix}1\\3 \end{matrix}\right){{/formula}}23 -1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{ matrix}-2\\1 \end{matrix}\right){{/formula}}22 +1. {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} 23 +1. {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}} 24 24 {{/aufgabe}} 25 25 26 26 {{aufgabe id="Linearkombination" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}} 27 27 Berechne jeweils den Vektor {{formula}}\vec c{{/formula}} 28 -1. {{formula}}-2\left(\begin{ matrix}1\\0,5\\4\end{matrix}\right)-4\left(\begin{matrix}-1\\0,5\\4\end{matrix}\right)+\frac{1}{2}\left(\begin{matrix}-2\\-2\\20\end{matrix}\right)=\vec c{{/formula}}29 -1. {{formula}}\left(\begin{ matrix}1\\2\\3\end{matrix}\right)-2\left(\begin{matrix}-2\\2\\0\end{matrix}\right)+\vec c=\vec o{{/formula}}28 +1. {{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-2\\-2\\20\end{array}\right)=\vec c{{/formula}} 29 +1. {{formula}}\left(\begin{array}{c}1\\2\\3\end{array}\right)-2\left(\begin{array}{c}-2\\2\\0\end{array}\right)+\vec c=\vec o{{/formula}} 30 30 {{/aufgabe}} 31 31 32 -{{aufgabe id="Segelregatta" afb="I" kompetenzen="K 1,K3,K6" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}32 +{{aufgabe id="Segelregatta Teil" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}} 33 33 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}. 34 34 35 35 [[image:segelregatta teil1.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]] 36 36 37 37 (% class="abc" %) 38 +1. (((Drücke die Vektoren {{formula}}\overrightarrow{s_1}{{/formula}} und {{formula}}\overrightarrow{s_2}{{/formula}} durch Linearkombinationen folgender Vektoren aus: 39 + 40 +{{formula}}\vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right){{/formula}} 41 +))) 38 38 1. (((Das Segelteam //Furious// steuert folgenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor. 39 39 40 -{{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c} {{/formula}},{{formula}}\overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}, {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}{{/formula}}, {{formula}}\overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}44 +{{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}, \qquad \overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}} 41 41 42 - mit{{formula}}\vec{a}=\left(\begin{matrix}25\\ 10 \end{matrix}\right),\quad \vec{b}=\left(\begin{matrix}-10\\ 10 \end{matrix}\right), \quad \vec{c}=\left(\begin{matrix} 0 \\ 30 \end{matrix}\right), \quad\vec{d}=\left(\begin{matrix}80\\ 0 \end{matrix}\right){{/formula}}46 +{{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}, \qquad \overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}} 43 43 48 +mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}} 49 + 44 44 Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung. 45 45 ))) 46 -1. Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit. 47 -1. Ein Photograph will Aufnahmen vom Segelteam //Straight// an der zweiten Boje machen und fährt auf direktem Weg vom Start dorthin. Er startet gleichzeitig mit dem Segelteam. Erreicht er die Position //(40|130)// bevor Team //Straight// das Kreuzchen //x// bei Boje 2 erreicht, wenn sein Boot nur ⅔ der Geschwindigkeit des Segelboots fährt? 52 +1. (((Das Segelteam //Straight// steuert das Schiff perfekt um die Bojen (wie eingezeichnet). Berechne die Länge des Segelkurses bis zur zweiten Boje. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.))) 48 48 {{/aufgabe}} 49 49 50 -{{aufgabe id=" In SummeNull" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}55 +{{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}} 51 51 Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}. 52 52 Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}} 53 53 {{/aufgabe}} ... ... @@ -60,7 +60,7 @@ 60 60 (es reicht jeweils eine Lösung) 61 61 {{/aufgabe}} 62 62 63 -{{aufgabe id=" Gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" cc="by" tags="iqb" zeit="10"}}68 +{{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" cc="by" tags="iqb" zeit="10"}} 64 64 Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}. 65 65 66 66 (% class="abc" %) ... ... @@ -78,8 +78,8 @@ 78 78 {{/aufgabe}} 79 79 80 80 {{aufgabe id="Vektor" afb="II" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}} 81 -Der Vektor {{formula}}\vec{a}= \left(\begin{ matrix} a_1 \\ a_2 \end{matrix}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.82 -Zusätzlich soll gelten: {{formula}}\left(\begin{ matrix}3 \\ 1 \end{matrix}\right) + \vec{a} = \left(\begin{matrix} 0,5 \\ d \end{matrix}\right){{/formula}}.86 +Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden. 87 +Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}. 83 83 Bestimme den Wert von d. 84 84 {{/aufgabe}} 85 85 ... ... @@ -97,7 +97,7 @@ 97 97 1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}. 98 98 {{/aufgabe}} 99 99 100 -{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" zeit="8"}}105 +{{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" Zeit="10"}} 101 101 Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander. 102 102 [[image:Sechseckvektoren.png||width="250" style="float:right"]] 103 103 ... ... @@ -110,7 +110,7 @@ 110 110 1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat. 111 111 {{/aufgabe}} 112 112 113 -{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" zeit="8"quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}118 +{{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}} 114 114 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt 115 115 {{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}} 116 116 wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet. ... ... @@ -129,41 +129,4 @@ 129 129 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt. 130 130 {{/aufgabe}} 131 131 132 -{{aufgabe id="Mittelpunkt einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1,K5" zeit="7" cc="by-sa" tags="mathebrücke"}} 133 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Mittelpunkts zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 134 - 135 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}M\left(\frac{x_1-y_1}{2}\Bigl|\frac{x_2-y_2}{2}\right){{/formula}} 136 - 137 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}M\left(\frac{x_1+x_2}{2}\Bigl|\frac{x_2+y_2}{2}\right){{/formula}} 138 - 139 -(%class=abc") 140 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch den Mittelpunkt der Strecke {{formula}}AB{{/formula}}. 141 -1. Gib an, welche Koordinaten des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch! 142 -1. Bestimme nun rechnerisch mit der richtigen Formel den Mittelpunkt der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 143 - 144 -{{lehrende}} 145 -* Umgang mit Formeln 146 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 147 -{{/lehrende}} 148 - 149 -{{/aufgabe}} 150 - 151 -{{aufgabe id="Länge einer Strecke" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K5" zeit="7" cc="by-sa" tags="mathebrücke"}} 152 -Klara und Alfons haben zwei verschiedene Formeln für die Berechnung des Abstands zweier Punkte {{formula}}A(x_1|y_1){{/formula}} und {{formula}}B(x_2|y_2){{/formula}}. 153 - 154 -Alfons glaubt, dass folgende Formel richtig ist: {{formula}}d=\sqrt{(x_1+x_2)^2+(y_1+y_2)^2}{{/formula}} 155 - 156 -Klara behauptet aber, dass ihre Formel die richtige ist: {{formula}}d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}{{/formula}} 157 - 158 -(%class=abc") 159 -1. Zeichne die Punkte {{formula}}A(3|5){{/formula}} und {{formula}}B(7|1){{/formula}} in ein Koordinatensystem und bestimme zeichnerisch die Länge der Strecke {{formula}}AB{{/formula}}. 160 -1. Gib an, welche Länge des Mittelpunkts Klara berechnet und welche Alfons? Begründe, wessen Formel richtig ist und streiche die falsche Formel durch! 161 -1. Bestimme nun rechnerisch mit der richtigen Formel die Länge der Strecke {{formula}}PQ{{/formula}} mit {{formula}}P(-4|2){{/formula}} und {{formula}}Q(3|-6){{/formula}}. 162 - 163 -{{lehrende}} 164 -* Umgang mit Formeln 165 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 166 -{{/lehrende}} 167 -{{/aufgabe}} 168 - 169 169 {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}
- XWiki.XWikiComments[3]
-
- Kommentar
-
... ... @@ -1,1 +1,3 @@ 1 -Wir haben diese Untereinheit schon in Seligweiler, jetzt nochmal in Mannheim diskutiert, nachdem uns inzwischen auch Erfahrung aus dem Einsatz im Unterricht vorliegen. Da uns die Seite zu reproduktionslastig erschien und zu viele gleichartige, einfache Aufgaben enthielt, haben wir sie jetzt nochmal überarbeitet. 1 +Wir haben diese Untereinheit schon in Seligweiler, jetzt nochmal in Mannheim diskutiert, nachdem uns inzwischen auch Erfahrung aus dem Einsatz im Unterricht vorliegen. Die Seite ist Reproduktionslastig, enthält zu viele gleichartige, einfache Aufgaben. 2 + 3 +Die Segelregatta soll noch was mit Geschwindigkeit bekommen und braucht neue Lösungen.
- XWiki.XWikiComments[4]
-
- Autor
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Kommentar
-
... ... @@ -1,0 +1,1 @@ 1 +Eine Aufgabe dazu: Berechne den Punkt P, der die Strecke AB im Verhältnis 2:1 zeilt. - Datum
-
... ... @@ -1,0 +1,1 @@ 1 +2024-11-15 13:44:51.438