Version 86.1 von akukin am 2024/02/06 19:10

Verstecke letzte Bearbeiter
Holger Engels 6.1 1 {{seiteninhalt/}}
holger 1.1 2
martina 3.1 3 [[Kompetenzen.K5]] Ich kann elementare Rechenoperationen für Vektoren verwenden
4 [[Kompetenzen.K4]] Ich kann elementare Rechenoperationen für Vektoren geometrisch deuten
5 [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors berechnen
martina 5.1 6 [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors als seine Länge interpretieren
martina 3.1 7 [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
holger 1.1 8
Daniel Stocker 13.2 9 == Vektoren ==
kickoff kickoff 7.1 10
Torben Würth 79.3 11 {{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
12 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}{{/formula}}
13 a)
14 {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}2\\4 \end{array}\right){{/formula}}
15 b)
16 {{formula}}\vec{a}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}}
17 {{/aufgabe}}
18
19 {{aufgabe id="Vektoraddition zeichnerisch 2" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
20 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}+\vec{c}{{/formula}}
21 a)
22 {{formula}}\vec{a}= \left(\begin{array}{c}2\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}4\\1 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}}
23 b)
24 {{formula}}\vec{a}= \left(\begin{array}{c}-2\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} {{formula}}\vec{c}= \left(\begin{array}{c}3\\3\end{array}\right){{/formula}}
25 {{/aufgabe}}
26
27 {{aufgabe id="Vektoraddition rechnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
28 Berechne
29 a)
30 {{formula}}\left(\begin{array}{c}12\\7 \end{array}\right)+\left(\begin{array}{c}2\\4 \end{array}\right)={{/formula}}
31 b)
Torben Würth 79.6 32 {{formula}}\left(\begin{array}{c}-16\\33 \end{array}\right)+\left(\begin{array}{c}0,5\\-33 \end{array}\right)={{/formula}}
33 c)
34 {{formula}}\left(\begin{array}{c}-1,5\\\frac{1}{3} \end{array}\right)+\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
Torben Würth 79.3 35 d)
36 {{formula}}\left(\begin{array}{c}\frac{1}{2}\sqrt{2}\\5\pi \end{array}\right)-\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
37 e)
38 {{formula}}\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
39
40 f)
41 {{formula}}\left(\begin{array}{c}1\\7\\9 \end{array}\right)+\left(\begin{array}{c}2\\4\\-1 \end{array}\right)={{/formula}}
42 g)
43 {{formula}}\left(\begin{array}{c}100\\71\\92 \end{array}\right)+\left(\begin{array}{c}203\\4\\-119\end{array}\right)={{/formula}}
44 h)
45 {{formula}}\left(\begin{array}{c}12,6\\8,1\\0,3\end{array}\right)-\left(\begin{array}{c}-0,6\\0,9\\\frac{1}{3}\end{array}\right)={{/formula}}
46 i)
47 {{formula}}\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
48 {{/aufgabe}}
49
50 {{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
51 a) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
52 b) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
53 {{/aufgabe}}
54
55 {{aufgabe id="Gemischte Aufgaben" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
56 a) {{formula}}2\left(\begin{array}{c}1\\3 \end{array}\right)={{/formula}}
57 b) {{formula}}3\left(\begin{array}{c}-2\\1 \end{array}\right)={{/formula}}
58 c) {{formula}}6\left(\begin{array}{c}-1\\6 \end{array}\right)={{/formula}}
59 d) {{formula}}\frac{1}{3}\left(\begin{array}{c}-3\\18 \end{array}\right)={{/formula}}
60 e) {{formula}}2\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+ 3\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-4\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
61 f){{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
62 {{/aufgabe}}
63
64
Katharina Lautenschlager 77.1 65 {{aufgabe id="Segelregatta Teil 1" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
akukin 80.1 66 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
67
68 Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
akukin 81.1 69 {{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}
akukin 80.1 70
akukin 81.1 71 [[image:segelregatta teil1.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
72 Drücke die Vektoren {{formula}}\overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{s_3}, \overrightarrow{s_4}{{/formula}} und {{formula}}\overrightarrow{s_5}{{/formula}} durch Linearkombinationen folgender Vektoren aus:
akukin 80.1 73
74 {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
Frauke Beckstette 67.1 75 {{/aufgabe}}
76
Katharina Lautenschlager 77.1 77 {{aufgabe id="Segelregatta Teil 2" afb="I" kompetenzen="K3, K4, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
akukin 85.1 78 [[image:Segelregatta Teil 2.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
79 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
80
81 Das Segelteam steuert den untenstehenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor.
82
83 {{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}, \qquad \overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}
84
85 {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}, \qquad \overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
86
87 mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
88
89 Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung.
Frauke Beckstette 67.1 90 {{/aufgabe}}
91
Katharina Lautenschlager 77.1 92 {{aufgabe id="Segelregatta Teil 3 (Länge einer Strecke)" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
Frauke Beckstette 67.1 93 [[image:segelregatta teil3.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
94 {{/aufgabe}}
95
Holger Engels 15.2 96 {{aufgabe id="Vektor" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
Daniel Stocker 10.1 97 Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
kickoff kickoff 7.1 98 Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
Holger Engels 15.2 99 Bestimme den Wert von d.
kickoff kickoff 7.1 100 {{/aufgabe}}
Daniel Stocker 13.1 101
Holger Engels 15.2 102 {{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
Daniel Stocker 13.1 103 Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
Holger Engels 15.2 104 Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
Daniel Stocker 13.1 105 {{/aufgabe}}
akukin 16.1 106
Frauke Beckstette 48.1 107 {{aufgabe id="Zylinder" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" niveau="e" tags="iqb" zeit="10"}}
akukin 16.1 108
109 In einem Koordinatensystem ist ein gerader Zylinder mit dem Radius 5 und der Höhe 10 gegeben, dessen Grundfläche in der {{formula}}x_1x_2{{/formula}}-Ebene liegt. {{formula}} M(8|5|10){{/formula}} ist der Mittelpunkt der Deckfläche.
akukin 28.2 110 1. Weise nach, dass der Punkt {{formula}}P(5|1|0) {{/formula}} auf dem Rand der Grundfläche des Zylinders liegt.
111 1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}.
akukin 20.1 112 {{/aufgabe}}
Frauke Beckstette 28.4 113
Frauke Beckstette 54.1 114 {{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" niveau="g" tags="iqb" Zeit="10"}}
Frauke Beckstette 30.1 115 Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
Frauke Beckstette 35.5 116 [[image:Sechseckvektoren.png||width="250" style="float:right"]]
Frauke Beckstette 52.1 117 1. Stelle die Vektoren {{formula}}\Vec{x} {{/formula}} und {{formula}}\Vec{y} {{/formula}} jeweils mithilfe der Eckpunkte des Sechsecks dar. {{formula}}\Vec{x}=\Vec{b}+\Vec{c}+\Vec{d} \qquad \Vec{y}=\Vec{a}+\Vec{c} {{/formula}}
Frauke Beckstette 53.1 118 1. Stelle den Vektor {{formula}}\overrightarrow{FB} {{/formula}} mithilfe **drei** der Vektoren {{formula}}\Vec{a}, \Vec{b}, \Vec{c}, \Vec{d}, \Vec{e} {{/formula}} und {{formula}}\Vec{f} {{/formula}} dar.
Frauke Beckstette 49.1 119 1. Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
Frauke Beckstette 30.1 120 {{/aufgabe}}
121
Frauke Beckstette 54.2 122 {{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" niveau="g" tags="iqb" zeit="10"}}
Frauke Beckstette 32.1 123 In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben.
124 1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind.
125 1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
126 {{/aufgabe}}
Frauke Beckstette 33.2 127
Frauke Beckstette 55.2 128 {{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" niveau="e" tags="iqb" zeit="10"}}
Frauke Beckstette 33.2 129 Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
130
Frauke Beckstette 55.3 131 1. Zeige, dass das Dreieck {{formula}}A, B, C{{/formula}} gleichschenklig ist.
132 1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an.
Frauke Beckstette 33.4 133 {{/aufgabe}}
Frauke Beckstette 33.3 134
Frauke Beckstette 56.4 135 {{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" zeit="10"}}
Frauke Beckstette 33.4 136 Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit.
137
Frauke Beckstette 57.1 138 [[image:Saarpolygon.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]
139 1. Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.
140 1. Berechne die Länge des Streckenzugs in der Wirklichkeit.
Frauke Beckstette 33.2 141 {{/aufgabe}}
Frauke Beckstette 33.4 142
Frauke Beckstette 36.2 143
Frauke Beckstette 59.2 144 {{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
Frauke Beckstette 36.2 145 Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}.
Frauke Beckstette 78.1 146 1. Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.
147 1. Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.
Frauke Beckstette 36.2 148 {{/aufgabe}}
Frauke Beckstette 38.3 149
Frauke Beckstette 59.1 150 {{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" niveau="e" tags="iqb" zeit="10"}}
Frauke Beckstette 38.3 151 [[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]]
152 Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung)
153
154 1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
155 1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}.
Frauke Beckstette 56.3 156 Begründe, dass {{formula}}|\overline{MD_k}|=\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
Frauke Beckstette 38.3 157 Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
Frauke Beckstette 42.2 158 {{/aufgabe}}
159
Frauke Beckstette 59.1 160 {{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="10"}}
Frauke Beckstette 45.3 161 [[image:Schwerpunkt.png||width="350" style="float: right"]]
Frauke Beckstette 43.2 162 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A(0|0|0){{/formula}}, {{formula}}B(2|3|4){{/formula}} und {{formula}}C(-1|5|-2){{/formula}}.
163 Die Seitenhalbierenden eines Dreiecks schneiden sich im Schwerpunkt {{formula}}S{{/formula}}.
Frauke Beckstette 45.3 164
Frauke Beckstette 43.2 165 1. Berechne die Koordinaten des Schwerpunktes {{formula}}S{{/formula}}.
166 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
167
168 {{/aufgabe}}
Frauke Beckstette 57.2 169
Frauke Beckstette 79.1 170 {{seitenreflexion kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}