Version 94.4 von Holger Engels am 2024/11/15 12:20

Zeige letzte Bearbeiter
1 {{seiteninhalt/}}
2
3 [[Kompetenzen.K5]] Ich kann elementare Rechenoperationen für Vektoren verwenden
4 [[Kompetenzen.K4]] Ich kann elementare Rechenoperationen für Vektoren geometrisch deuten
5 [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors berechnen
6 [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann den Betrag eines Vektors als seine Länge interpretieren
7 [[Kompetenzen.K5]] Ich kann Vektoren zur Bestimmung von Teilpunkten einer Strecke verwenden
8
9 {{aufgabe id="Vektoraddition zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6" links="[[Interaktiv>>https://kmap.eu/app/exercise/Mathematik/Rechnen%20mit%20Vektoren/Addition%20und%20Subtraktion/Addition]]"}}
10 Gegeben sind die Vektoren {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}} und {{formula}}\vec{b}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
11 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch ...
12 (% class="abc" %)
13 1. {{formula}}\vec{a}+\vec{b}{{/formula}}
14 1. {{formula}}\vec{a}-2\vec{b}{{/formula}}
15 {{/aufgabe}}
16
17 {{aufgabe id="Vektoraddition zeichnerisch 2" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="8"}}
18 Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{b}+\vec{c}{{/formula}}
19 a)
20 {{formula}}\vec{a}= \left(\begin{array}{c}2\\3 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}4\\1 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}-1\\2 \end{array}\right){{/formula}}
21 b)
22 {{formula}}\vec{a}= \left(\begin{array}{c}-2\\2 \end{array}\right){{/formula}} ; {{formula}}\vec{b}= \left(\begin{array}{c}3\\-4 \end{array}\right){{/formula}} ; {{formula}}\vec{c}= \left(\begin{array}{c}3\\3\end{array}\right){{/formula}}
23 {{/aufgabe}}
24
25 {{aufgabe id="Vektoraddition rechnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="12"}}
26 Berechne
27 a)
28 {{formula}}\left(\begin{array}{c}12\\7 \end{array}\right)+\left(\begin{array}{c}2\\4 \end{array}\right)={{/formula}}
29 b)
30 {{formula}}\left(\begin{array}{c}-16\\33 \end{array}\right)+\left(\begin{array}{c}0,5\\-33 \end{array}\right)={{/formula}}
31 c)
32 {{formula}}\left(\begin{array}{c}-1,5\\\frac{1}{3} \end{array}\right)+\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
33 d)
34 {{formula}}\left(\begin{array}{c}\frac{1}{2}\sqrt{2}\\5\pi \end{array}\right)-\left(\begin{array}{c}\sqrt{2}\\\pi\end{array}\right)={{/formula}}
35 e)
36 {{formula}}\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
37
38 f)
39 {{formula}}\left(\begin{array}{c}1\\7\\9 \end{array}\right)+\left(\begin{array}{c}2\\4\\-1 \end{array}\right)={{/formula}}
40 g)
41 {{formula}}\left(\begin{array}{c}100\\71\\92 \end{array}\right)+\left(\begin{array}{c}203\\4\\-119\end{array}\right)={{/formula}}
42 h)
43 {{formula}}\left(\begin{array}{c}12,6\\8,1\\0,3\end{array}\right)-\left(\begin{array}{c}-0,6\\0,9\\\frac{1}{3}\end{array}\right)={{/formula}}
44 i)
45 {{formula}}\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
46 {{/aufgabe}}
47
48 {{aufgabe id="Multiplikation eines Vektors mit einer Zahl zeichnerisch" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="6"}}
49 a) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}=2\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}1\\3 \end{array}\right){{/formula}}
50 b) Zeichne ein zweidimensionales Koordinatensystem und ermittle zeichnerisch {{formula}}\vec{a}+\vec{a}+\vec{a}=3\vec{a}{{/formula}} mit {{formula}}\vec{a}= \left(\begin{array}{c}-2\\1 \end{array}\right){{/formula}}
51 {{/aufgabe}}
52
53 {{aufgabe id="Gemischte Aufgaben" afb="I" kompetenzen="K5" quelle="Torben Würth" cc="BY-SA" zeit="10"}}
54 a) {{formula}}2\left(\begin{array}{c}1\\3 \end{array}\right)={{/formula}}
55 b) {{formula}}3\left(\begin{array}{c}-2\\1 \end{array}\right)={{/formula}}
56 c) {{formula}}6\left(\begin{array}{c}-1\\6 \end{array}\right)={{/formula}}
57 d) {{formula}}\frac{1}{3}\left(\begin{array}{c}-3\\18 \end{array}\right)={{/formula}}
58 e) {{formula}}2\left(\begin{array}{c}\frac{3}{7}\\5 \end{array}\right)+ 3\left(\begin{array}{c}\frac{5}{7}\\5 \end{array}\right)-4\left(\begin{array}{c}\frac{1}{7}\\5 \end{array}\right)={{/formula}}
59 f){{formula}}-2\left(\begin{array}{c}1\\0,5\\4\end{array}\right)-4\left(\begin{array}{c}-1\\0,5\\4\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}-1\\-2\\20\end{array}\right)={{/formula}}
60 {{/aufgabe}}
61
62
63 {{aufgabe id="Segelregatta Teil 1" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
64 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
65
66 Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
67 {{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}
68
69 [[image:segelregatta teil1.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
70 Drücke die Vektoren {{formula}}\overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{s_3}, \overrightarrow{s_4}{{/formula}} und {{formula}}\overrightarrow{s_5}{{/formula}} durch Linearkombinationen folgender Vektoren aus:
71
72 {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
73 {{/aufgabe}}
74
75 {{aufgabe id="Segelregatta Teil 2" afb="I" kompetenzen="K3, K4, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
76 [[image:Segelregatta Teil 2.jpg||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
77 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
78
79 Das Segelteam steuert den untenstehenden Kurs um die Bojen. Dabei dient der „Landungspunkt“ jedes Vektors immer als Startpunkt für den neuen Vektor.
80
81 {{formula}}\overrightarrow{f_1}= 3 \vec{b}+\frac{5}{3} \vec{c}, \qquad \overrightarrow{f_2}= \vec{a}- 2\vec{b}+\frac{7}{2} \vec{c}{{/formula}}
82
83 {{formula}}\overrightarrow{f_3}= \vec{a}- \vec{b} + \frac{3}{4} \vec{d}, \qquad \overrightarrow{f_4}= 2\vec{b}-6,5\vec{c}{{/formula}}
84
85 mit {{formula}}\vec{a}=\left(\begin{array}{c} 25 \\ 10 \end{array}\right), \quad \vec{b}=\left(\begin{array}{c} -10 \\ 10 \end{array}\right), \quad \vec{c}=\left(\begin{array}{c} 0 \\ 30 \end{array}\right), \quad \vec{d}=\left(\begin{array}{c} 80 \\ 0 \end{array}\right){{/formula}}
86
87 Prüfe, ob der Kurs den Regeln der Regatta entspricht. Begründe deine Entscheidung.
88 {{/aufgabe}}
89
90 {{aufgabe id="Segelregatta Teil 3 (Länge einer Strecke)" afb="I" kompetenzen="K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="5"}}
91 Im Segel-Wettbewerb müssen nacheinander die einzelnen Bojen {{formula}}B_1{{/formula}} bis {{formula}}B_4{{/formula}} von außen umfahren werden. Das Rennen beginnt im Punkt {{formula}}S(40|0){{/formula}} und endet im Punkt {{formula}}Z(130|0){{/formula}}.
92
93 Das Segelteam steuert das Schiff um die Bojen, sie segeln also entlang der folgenden Vektoren:
94 {{formula}}\overrightarrow{s_1}= \left(\begin{array}{c} -20 \\ 80 \end{array}\right), \overrightarrow{s_2}= \left(\begin{array}{c} 20 \\ 50 \end{array}\right), \overrightarrow{s_3}= \left(\begin{array}{c} 75 \\ 40 \end{array}\right), \overrightarrow{s_4}= \left(\begin{array}{c} 35 \\ -55 \end{array}\right){{/formula}} und {{formula}}\overrightarrow{s_5}= \left(\begin{array}{c} -20 \\ -155 \end{array}\right){{/formula}}.
95
96 Berechne die Gesamtlänge dieses Segelkurses. Eine Längeneinheit im Koordinatensystem entspricht 100 Metern in der Wirklichkeit.
97
98 [[image:SegelregattaTeil3.png||width="600" style="display:block;margin-left:auto;margin-right:auto"]]
99 {{/aufgabe}}
100
101 {{aufgabe id="Vektoraddition" afb="I" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
102 Gegeben sind die Punkte {{formula}}A(3|1|5){{/formula}}, {{formula}}B(5|2|4){{/formula}} und {{formula}}C(8|7|1){{/formula}}.
103 Berechne die Koordinaten von einem Punkt {{formula}}D(d_1|d_2|d_3){{/formula}}, wobei gilt: {{formula}}\overrightarrow{AB}-\overrightarrow{CA}+\overrightarrow{BC}-\overrightarrow{DA}=\overrightarrow{o}{{/formula}}
104 {{/aufgabe}}
105
106 {{aufgabe id="gleichschenkliges Dreieck" afb="I" kompetenzen="K1, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_3.pdf]]" cc="by" tags="iqb" zeit="10"}}
107 Gegeben sind die Punkte {{formula}}A(5|-5|12){{/formula}}, {{formula}}B(5|5|12){{/formula}} und {{formula}}C(-5|5|12){{/formula}}.
108
109 1. Zeige, dass das Dreieck {{formula}}A, B, C{{/formula}} gleichschenklig ist.
110 1. Begründe, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Quadrats sein können, und gib die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}} dieses Quadrats an.
111 {{/aufgabe}}
112
113 {{aufgabe id="Saarpolygon" afb="I" kompetenzen="K1, K3, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_5.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
114 Die Abbildung 1 zeigt das sogenannte Saarpolygon, ein im Inneren begehbares Denkmal zur Erinnerung an den stillgelegten Kohlebergbau im Saarland. Das Saarpolygon kann in einem Koordinatensystem modellhaft durch den Streckenzug dargestellt werden, der aus den drei Strecken {{formula}}\overline{AB}{{/formula}} , {{formula}}\overline{BC}{{/formula}} und {{formula}}\overline{CD}{{/formula}} mit {{formula}}A(11|11|0){{/formula}}, {{formula}}B(-11|11|28){{/formula}}, {{formula}}C(11|-11|28){{/formula}} und {{formula}}D(-11|-11|0){{/formula}} besteht (vgl. Abbildung 2). {{formula}}A, B, C{{/formula}} und {{formula}}D{{/formula}} sind Eckpunkte eines Quaders. Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Wirklichkeit.
115
116 [[image:Saarpolygon.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]]
117 1. Begründe, dass die Punkte {{formula}}B{{/formula}} und {{formula}}C{{/formula}} symmetrisch bezüglich der {{formula}}x_3{{/formula}}-Achse liegen.
118 1. Berechne die Länge des Streckenzugs in der Wirklichkeit.
119 {{/aufgabe}}
120
121 {{aufgabe id="Vektor" afb="II" kompetenzen="K5" quelle="Daniel Stocker" cc="BY-SA" zeit="5"}}
122 Der Vektor {{formula}}\vec{a}= \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right){{/formula}} verläuft parallel zur zweiten Winkelhalbierenden.
123 Zusätzlich soll gelten: {{formula}}\left(\begin{array}{c} 3 \\ 1 \end{array}\right) + \vec{a} = \left(\begin{array}{c} 0,5 \\ d \end{array}\right){{/formula}}.
124 Bestimme den Wert von d.
125 {{/aufgabe}}
126
127 {{aufgabe id="Parallelogramm" afb="II" kompetenzen="K1, K2, K5" quelle="Beckstette, Lautenschlager" cc="BY-SA" zeit="10"}}
128 Gegeben sind die Punkte {{formula}}A(1|2|3){{/formula}}, {{formula}}B(4|6|4){{/formula}}, {{formula}}C(2|9|6){{/formula}} und {{formula}}D(-1|5|5){{/formula}}.
129 1. Zeige, dass das Viereck {{formula}}ABCD{{/formula}} ein Parallelogramm ist.
130 1. Der Punkt {{formula}}P{{/formula}} liegt auf der Strecke {{formula}}\overline{BD}{{/formula}}. Berechne die Koordinaten des Punktes {{formula}}P{{/formula}} so, dass er die Strecke {{formula}}\overline{BD}{{/formula}} im Verhältnis {{formula}}1:4{{/formula}} teilt.
131 {{/aufgabe}}
132
133 {{aufgabe id="Zylinder" afb="II" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_A_AGLA%28A2%29_1_1.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
134 In einem Koordinatensystem ist ein gerader Zylinder mit dem Radius 5 und der Höhe 10 gegeben, dessen Grundfläche in der {{formula}}x_1x_2{{/formula}}-Ebene liegt. {{formula}} M(8|5|10){{/formula}} ist der Mittelpunkt der Deckfläche.
135 1. Weise nach, dass der Punkt {{formula}}P(5|1|0) {{/formula}} auf dem Rand der Grundfläche des Zylinders liegt.
136 1. Unter allen Punkten auf dem Rand der Deckfläche hat der Punkt {{formula}} S {{/formula}} den kleinsten Abstand von {{formula}} P {{/formula}}, der Punkt {{formula}} T {{/formula}} den größten. Gib die Koordinaten von {{formula}} S {{/formula}} an und bestimme die Koordinaten von {{formula}} T {{/formula}}.
137 {{/aufgabe}}
138
139 {{aufgabe id="Vektoren Sechseck" afb="II" kompetenzen="K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_1.pdf]]" cc="by" niveau="g" tags="iqb" Zeit="10"}}
140 Im abgebildeten Sechseck {{formula}}ABCDEF{{/formula}} sind jeweils zwei Seiten parallel zueinander.
141 [[image:Sechseckvektoren.png||width="250" style="float:right"]]
142 1. Stelle die Vektoren {{formula}}\Vec{x} {{/formula}} und {{formula}}\Vec{y} {{/formula}} jeweils mithilfe der Eckpunkte des Sechsecks dar. {{formula}}\Vec{x}=\Vec{b}+\Vec{c}+\Vec{d} \qquad \Vec{y}=\Vec{a}+\Vec{c} {{/formula}}
143 1. Stelle den Vektor {{formula}}\overrightarrow{FB} {{/formula}} mithilfe **drei** der Vektoren {{formula}}\Vec{a}, \Vec{b}, \Vec{c}, \Vec{d}, \Vec{e} {{/formula}} und {{formula}}\Vec{f} {{/formula}} dar.
144 1. Der Punkt {{formula}}A{{/formula}} hat in einem kartesischen Koordinatensystem die Koordinaten {{formula}}x_1 = 6, x_2 = 2 {{/formula}} und {{formula}}x_3=-4{{/formula}} Der Mittelpunkt der Strecke {{formula}}\overline{AB} {{/formula}} wird mit {{formula}}M {{/formula}} bezeichnet. Der Punkt {{formula}}K(2|0|8){{/formula}} ist der Mittelpunkt der Strecke {{formula}} \overline{AM} {{/formula}}. Ermittle die Koordinaten von {{formula}}B{{/formula}}.
145 {{/aufgabe}}
146
147 {{aufgabe id="Nachweis Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/sammlung/abitur/sammlung/mathematik/grundlegend/Beispielaufgaben_23.pdf]]" cc="by" niveau="g" tags="iqb" zeit="10"}}
148 In einem kartesischen Koordinatensystem sind die Punkte {{formula}}A(1|2|5){{/formula}}, {{formula}}B(2|7|8){{/formula}} und {{formula}}C(-3|2|4){{/formula}} gegeben.
149 1. Weise nach, dass {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} Eckpunkte eines Dreiecks sind.
150 1. Für jede reelle Zahl {{formula}}a{{/formula}} ist ein Punkt {{formula}} D_a(a|2+a\sqrt{2}|5+\sqrt{2}) {{/formula}} gegeben. Bestimme alle Werte von {{formula}}a{{/formula}}, für die die Strecke von {{formula}} A{{/formula}} nach {{formula}}D_a{{/formula}} die Länge 2 hat.
151 {{/aufgabe}}
152
153 {{aufgabe id="Gleichschenkliges Dreieck und Flächeninhalt" afb="III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_4.pdf]]" cc="by" niveau="e" tags="iqb" zeit="10"}}
154 [[image:gleichschenkligesdreieckabb1.png||width="200" style="float: right"]]
155 Für {{formula}}k \in \mathbb{R} {{/formula}} mit {{formula}}0<k\leq 6{{/formula}} werden die Pyramiden {{formula}}ABCD_k {{/formula}} mit {{formula}}A(0|0|0), B(4|0|0), C(0|4|0){{/formula}} und {{formula}} D_k(0|0|k){{/formula}} betrachtet (vgl. Abbildung)
156
157 1. Begründe, dass das Dreieck {{formula}}BCD_k{{/formula}} gleichschenklig ist.
158 1. Der Mittelpunkt der Strecke {{formula}}\overline{BC}{{/formula}} ist {{formula}}M(2|2|0){{/formula}}.
159 Begründe, dass {{formula}}|\overline{MD_k}|=\left| \left(\begin{array}{c} -2 \\ -2 \\ k \end{array}\right)\right|{{/formula}} die Länge einer Höhe des Dreiecks {{formula}}BCD_k{{/formula}} ist.
160 Bestimme den Flächeninhalt des Dreiecks {{formula}}BCD_k{{/formula}}.
161 {{/aufgabe}}
162
163 {{aufgabe id="Flächeninhalte Verhältnis" afb="II" kompetenzen="K1, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_9.pdf]]" niveau="g" tags="iqb" cc="by"}}
164 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A,B{{/formula}} und {{formula}}C{{/formula}}. Für den Punkt {{formula}}D{{/formula}} gilt
165 {{formula}}\overrightarrow{OD}=\overrightarrow{OC}-2\cdot\overrightarrow{AB}{{/formula}}
166 wobei {{formula}}O{{/formula}} den Koordinatenursprung bezeichnet.
167
168 Ermittle das Verhältnis des Inhalts der Fläche des Dreiecks {{formula}}ABC{{/formula}} zum Inhalt der Fläche des Trapezes {{formula}}ABCD{{/formula}}.
169 Stelle dein Vorgehen durch eine geeignete Ergänzung der Abbildung dar.
170 [[image:DreieckABC.PNG||width="250" style="display:block;margin-left:auto;margin-right:auto"]]
171 {{/aufgabe}}
172
173 {{aufgabe id="Schwerpunkt im Dreieck" afb="III" kompetenzen="K1, K2, K5" quelle="Beckstette, Fujan, Lautenschlager" cc="BY-SA" zeit="10" niveau="p"}}
174 [[image:Schwerpunkt.png||width="350" style="float: right"]]
175 Gegeben ist das Dreieck {{formula}}ABC{{/formula}} mit den Eckpunkten {{formula}}A(0|0|0){{/formula}}, {{formula}}B(2|3|4){{/formula}} und {{formula}}C(-1|5|-2){{/formula}}.
176 Die Seitenhalbierenden eines Dreiecks schneiden sich im Schwerpunkt {{formula}}S{{/formula}}.
177
178 1. Berechne die Koordinaten des Schwerpunktes {{formula}}S{{/formula}}.
179 1. Weise mit Hilfe von Vektoren nach, dass der Schwerpunkt {{formula}}S{{/formula}} die Seitenhalbierenden im Verhältnis 2:1 teilt.
180 {{/aufgabe}}
181
182 {{seitenreflexion bildungsplan="5" kompetenzen="4" anforderungsbereiche="4" kriterien="3" menge="4"/}}