Wiki-Quellcode von Lösung Vektoraddition rechnerisch
Zuletzt geändert von akukin am 2024/12/22 18:37
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | a) | ||
2 | {{formula}}\left(\begin{matrix}12\\7 \end{matrix}\right)+\left(\begin{matrix}2\\4 \end{matrix}\right)=\left(\begin{matrix}12+2\\7+4 \end{matrix}\right)=\left(\begin{matrix}14\\11\end{matrix}\right){{/formula}} | ||
3 | |||
4 | b) | ||
5 | {{formula}}\left(\begin{matrix}-16\\33 \end{matrix}\right)+\left(\begin{matrix}0,5\\-33 \end{matrix}\right)=\left(\begin{matrix}-16+0,5\\33+(-33) \end{matrix}\right)=\left(\begin{matrix}-15,5\\0 \end{matrix}\right){{/formula}} | ||
6 | |||
7 | c) | ||
8 | {{formula}}\left(\begin{matrix}-1,5\\\frac{1}{3} \end{matrix}\right)+\left(\begin{matrix}\sqrt{2}\\\pi\end{matrix}\right)=\left(\begin{matrix}-1,5+\sqrt{2}\\\frac{1}{3}+ \pi \end{matrix}\right)\approx \left(\begin{matrix}-0,086\\ 3,475 \end{matrix}\right){{/formula}} | ||
9 | |||
10 | d) | ||
11 | {{formula}}\left(\begin{matrix}\frac{1}{2}\sqrt{2}\\5\pi \end{matrix}\right)-\left(\begin{matrix}\sqrt{2}\\\pi\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\sqrt{2}-\sqrt{2}\\5\pi- \pi\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\sqrt{2}\\4\pi \end{matrix}\right) \approx \left(\begin{matrix}-0,707\\ 12,566 \end{matrix}\right) {{/formula}} | ||
12 | |||
13 | e) | ||
14 | {{formula}}\left(\begin{matrix}\frac{3}{7}\\5 \end{matrix}\right)+\left(\begin{matrix}\frac{5}{7}\\5 \end{matrix}\right)-\left(\begin{matrix}\frac{1}{7}\\5 \end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}+\frac{5}{7}-\frac{1}{7}\\5+5-5 \end{matrix}\right)=\left(\begin{matrix}1 \\5\end{matrix}\right){{/formula}} | ||
15 | |||
16 | f) | ||
17 | {{formula}}\left(\begin{matrix}1\\7\\9 \end{matrix}\right)+\left(\begin{matrix}2\\4\\-1 \end{matrix}\right)=\left(\begin{matrix}1+2\\7+4\\9+(-1) \end{matrix}\right)=\left(\begin{matrix}3\\11\\8 \end{matrix}\right){{/formula}} | ||
18 | |||
19 | g) | ||
20 | {{formula}}\left(\begin{matrix}100\\71\\92 \end{matrix}\right)+\left(\begin{matrix}203\\4\\-119\end{matrix}\right)=\left(\begin{matrix}100+203\\71+4\\92+(-119) \end{matrix}\right)=\left(\begin{matrix}303\\75\\-27 \end{matrix}\right){{/formula}} | ||
21 | |||
22 | h) | ||
23 | {{formula}}\left(\begin{matrix}12,6\\8,1\\0,3\end{matrix}\right)-\left(\begin{matrix}-0,6\\0,9\\\frac{1}{3}\end{matrix}\right)=\left(\begin{matrix}12,6-(-0,6)\\8,1-0,9\\0,3-\frac{1}{3}\end{matrix}\right)=\left(\begin{matrix}13,2\\7,2\\-\frac{1}{30}\end{matrix}\right){{/formula}} | ||
24 | |||
25 | i) | ||
26 | {{formula}}\left(\begin{matrix}1\\0,5\\4\end{matrix}\right)-\left(\begin{matrix}-1\\0,5\\4\end{matrix}\right)+\left(\begin{matrix}-1\\-2\\20\end{matrix}\right)=\left(\begin{matrix}1-(-1)+(-1)\\0,5-0,5+(-2)\\4-4+20\end{matrix}\right)=\left(\begin{matrix}1\\-2\\20\end{matrix}\right){{/formula}} |