Wiki-Quellcode von BPE 10.6 Anwendung

Zuletzt geändert von akukin am 2024/10/10 16:03

Zeige letzte Bearbeiter
1 {{seiteninhalt/}}
2
3 [[Kompetenzen.K6]], [[Kompetenzen.K5]], [[Kompetenzen.K4]] Ich kann periodische Vorgänge mit trigonometrischen Funktionen beschreiben
4 [[Kompetenzen.K1]] Ich kann die Funktionseigenschaften im Anwendungskontext deuten
5 [[Kompetenzen.K5]], [[Kompetenzen.K6]] Ich kann Gleichungen zur Untersuchung realistischer Probleme verwenden und die Lösungen interpretieren
6
7 {{aufgabe id="Photoperiodismus" afb="II" kompetenzen="" quelle="Holger Engels" cc="BY-SA"}}
8 Photoperiodismus bezeichnet die Abhängigkeit von Wachstum, Entwicklung und Verhalten bei Pflanzen von der Tageslänge (Photoperiode). Sogenannte Kurztagpflanzen warten mit dem Beginn der Blütenbildung, bis die tägliche Beleuchtungsspanne eine bestimmte Dauer unterschreitet. Langtagpflanzen warten, bis die Taglänge eine bestimmte Dauer überschreitet.
9
10 Um den Blühzeitpunkt einer Pflanze möglichst exakt berechnen zu können, soll die Tageslänge über die Monate mit einer trigonometrischen Funktion modelliert werden. Auf der Website [[Solar TOPO>>http://www.solartopo.com/tageslaenge-jahresverlauf.htm]] kannst du den Verlauf der Tageslänge für deinen Standort ermitteln. Runde die ermittelten Werte großzügig, sodas du mit ganzen Zahlen arbeiten kannst. Auch bei den Monaten darfst du runden, sodass die Sonnenwenden auf Ende Dezember und Ende Juni zu liegen kommen.
11
12 Berechne den Blühzeitpunkt für eine Langtagpflanze, die auf eine Tageslänge von 10 Stunden wartet!
13 {{/aufgabe}}
14
15 {{aufgabe id="Riesenrad" afb="II" kompetenzen="K1,K4,K5,K6" quelle="Dirk Tebbe, Corinne Blaumeiser" cc="BY-SA"}}
16 Das Riesenrad Sky Lounge Wheel auf dem Stuttgarter Schlossplatz hat einen Durchmesser von 58 Metern. Du steigst in eine Gondel ein und fährst in 12 Minuten eine Runde.
17 Stelle eine trigonometrische Funktion der Höhe in Abhängigkeit von der Zeit auf. Findest du weitere mögliche Funktionsterme?
18 [[Stuggi TV>>https://www.stuggi.tv/2023/11/alle-infos-rund-um-das-riesenrad-auf-dem-schlossplatz/]]
19 {{/aufgabe}}
20
21 {{aufgabe id="CO2-Konzentration trigonometrisch" afb="II" kompetenzen="K1, K4, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_B_Analysis_WTR_1.pdf]]" niveau="e" tags="iqb" cc="by"}}
22 In einer Messstation wird seit 1958 kontinuierlich die CO,,2,,-Konzentration in der Luft gemessen, die in ppm (parts per million) angegeben wird. Innerhalb eines Jahres schwankt die CO,,2,,-Konzentration. Für einen bestimmten Zeitraum von acht Monaten lassen sich die gemessenen Werte modellhaft durch die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}k: x \mapsto 3,3\cdot \sin\left(\frac{\pi}{6}x\right)+406{{/formula}} beschreiben. Dabei ist {{formula}}x{{/formula}} die in diesem Zeitraum vergangene Zeit in Monaten und {{formula}}k(x){{/formula}} die CO,,2,,-Konzentration in ppm. Vereinfachend wird davon ausgegangen, dass jeder Monat 30 Tage hat.
23
24 Gib an, wie der Graph von {{formula}}k{{/formula}} schrittweise aus dem Graphen der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}s: x \mapsto \sin(x){{/formula}} hervorgeht. Beurteile, ob die Reihenfolge der einzelnen Schritte von Bedeutung ist.
25 {{/aufgabe}}
26
27 {{seitenreflexion}}