Zuletzt geändert von Martin Rathgeb am 2025/01/05 15:47

Von Version 50.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:21
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 53.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:26
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -32,13 +32,12 @@
32 32  //Ansatz//. Wähle für //q// Potenzen von //e// und approximiere den Differenzialquotienten durch Differenzenquotienten mit kleinen Nennern.
33 33  1. Zeige unter Verwendung der Kettenregel und folgender Anmerkung die Ableitungsregel für die Exponentialfunktionen auf S. 5 der Merkhilfe. Dort wird der Funktionsterm {{formula}}e^{bx}{{/formula}} betrachtet, das ist für {{formula}}b=\ln(q){{/formula}} der Funktionsterm von {{formula}}f_q{{/formula}}, nämlich {{formula}}e^{bx}=e^{\ln(q)x}=q^x=f_q(x){{/formula}}.
34 34  
35 -//Anmerkung//.(% class="abc" %)
36 -1. Es gilt folgende Gleichung:
37 - {{formula}}f_q'(0)=\ln(q)\:.{{/formula}}
35 +//Anmerkung//.(% class="alphastyle" %)
36 +1. Es gilt folgende Gleichung: {{formula}}f_q'(0)=\ln(q){{/formula}}.
38 38  Das liefert einen alternativen Zugang zur natürlichen Logarithmusfunktion (als Alternative zu ihrer Erscheinungsweise als Umkehrfunktion der natürlichen Exponentialfunktion).
39 -1. Es gilt die Äquivalenz folgender Gleichungen: {{formula}}\[\lim_{h\to 0} \frac{q^h-1}{h}=1 \Leftrightarrow q=e\:.\]{{/formula}}
38 +1. Es gilt die Äquivalenz folgender Gleichungen: {{formula}}\lim_{h\to 0} \frac{q^h-1}{h}=1 \Leftrightarrow q=e{{/formula}}.
40 40  Das charakterisiert zunächst eine reelle Zahl, die wir durch "{{formula}}e{{/formula}}" bezeichnen" und das zeichnet weiter die natürliche Exponentialfunktion (zur Basis //e//) unter allen Exponentialfunktionen aus: {{formula}}f_e'(x)=f_e(x){{/formula}} bzw. kurz {{formula}}f_e'=f_e{{/formula}}.
41 -1. Es gilt allgemein für die Funktionswerte von {{formula}}f_q'{{/formula}}: {{formula}}\[f_q'(x)=\ln(q)\cdot f_q(x)\:.\]{{/formula}}
40 +1. Es gelten allgemein folgende Gleichungen für die erste Ableitung: {{formula}}f_q'(x)=\ln(q)\cdot f_q(x){{/formula}} bzw. kurz {{formula}}f_q'=\ln(q)\cdot f_q{{/formula}}.
42 42  {{/aufgabe}}
43 43  
44 44  {{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}}
... ... @@ -46,7 +46,7 @@
46 46  //Implizites Differenzieren//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=e^{\ln(x)}=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=e^{\ln(x)}\cdot \ln'(x){{/formula}} nach {{formula}}\ln'{{/formula}} auf.
47 47  {{/aufgabe}}
48 48  
49 -{{aufgabe id="Potenzregel und Produktregel" afb="III" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
48 +{{aufgabe id="Potenzregel und Produktregel" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
50 50  Gegeben ist eine Funktion //f// mit {{formula}}f(x)=x^k{{/formula}}.
51 51  (% class="abc" %)
52 52  1. Zeige die Instanz der Potenzregel für {{formula}}k=0,1,2{{/formula}} mittels Definition des Differenzialquotienten.
... ... @@ -62,7 +62,7 @@
62 62  //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}f(x)=x^k=e^{k\cdot \ln(x)}{{/formula}} von //f// und verwende die Ableitung der e-Funktion zzgl. Kettenregel.
63 63  {{/aufgabe}}
64 64  
65 -{{aufgabe id="Winkelfunktionen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}}
64 +{{aufgabe id="Winkelfunktionen" afb="III" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}}
66 66  Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras).
67 67  (% class="abc" %)
68 68  1. //Implizites Differenzieren//. Zeige, dass gilt: {{formula}}\sin(x)\sin'(x)=-\cos(x)\cos'(x){{/formula}}.