Zuletzt geändert von Holger Engels am 2025/10/23 09:42

Von Version 86.1
bearbeitet von Martina Wagner
am 2025/10/14 12:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 58.1
bearbeitet von Martin Rathgeb
am 2025/01/05 14:46
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.martinawagner
1 +XWiki.martinrathgeb
Inhalt
... ... @@ -1,53 +1,6 @@
1 1  [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden
2 2  [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren
3 3  
4 -{{aufgabe id="Verknüpfung" afb="I" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="6"}}
5 -Bestimme die Ableitung der folgenden Funktionen.
6 -
7 -a) {{formula}}f(x)= e^{x}+2x +9 {{/formula}}.
8 -b) {{formula}}f(x)=x \cdot sin(x) {{/formula}}.
9 -c) {{formula}}f(x)= \frac{2x^{3} + 4x}{x} {{/formula}}.
10 -
11 -
12 -{{/aufgabe}}
13 -
14 -{{aufgabe id="Verkettung" afb="I" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="6"}}
15 -Bestimme die Ableitung der folgenden Funktionen.
16 -
17 -a) {{formula}}f(x)=(3x+4)^5{{/formula}}.
18 -b) {{formula}}f(x)=e^{-0,5x+3} {{/formula}}.
19 -c) {{formula}}f(x)=-0,5cos(2x-6) {{/formula}}.
20 -
21 -{{/aufgabe}}
22 -
23 -{{aufgabe id="Verknüpfung und Verkettung" afb="II" kompetenzen="K5" quelle="Martina Wagner" cc="BY-SA" zeit="8"}}
24 -Bestimme die Ableitung der folgenden Funktionen.
25 -
26 -a) {{formula}}f(x)=\sqrt{x} + cos (\pi {x}){{/formula}}.
27 -b) {{formula}}f(x)=e^{-0,5x}\cdot sin(6x-1) {{/formula}}.
28 -
29 -{{/aufgabe}}
30 -
31 -{{aufgabe id="Verknüpfung und Verkettung eAN" afb="II" kompetenzen="K5" quelle="Martina Wagner" niveau= "e" cc="BY-SA" zeit="8"}}
32 -
33 -Bestimme die Ableitung der folgenden Funktionen.
34 -
35 -a) {{formula}}f(x)=e^{ln(0,75)x}+ln(9x-5) {{/formula}}
36 -b) {{formula}}f(x)=(3x+1)\cdot e^{-x^4} {{/formula}}.
37 -
38 -{{/aufgabe}}
39 -
40 -{{aufgabe id="Funktion und Ableitung" afb="III" kompetenzen="K2, K5" quelle="Martina Wagner" cc="BY-SA" zeit="8"}}
41 -
42 -Ein Funktionsterm und deren Ableitung wurde nur unvollständig gegeben. Ermittle mögliche Eintragungen für die Kästchen.
43 -
44 -a) {{formula}}f(x)=e^{2x}\cdot\square {{/formula}} und {{formula}}f´(x)=2e^{2x}\cdot\square + 4e^{2x} {{/formula}}
45 -b) {{formula}}f(x)=(3x+1)\cdot e^{-x^4} {{/formula}}.
46 -
47 -{{/aufgabe}}
48 -
49 -
50 -
51 51  {{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
52 52  Gegeben sind eine reelle Zahl //a// sowie zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
53 53  (% class="abc" %)
... ... @@ -115,7 +115,7 @@
115 115  Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras).
116 116  (% class="abc" %)
117 117  1. //Implizites Differenzieren//. Zeige, dass gilt: {{formula}}\sin(x)\sin'(x)=-\cos(x)\cos'(x){{/formula}}.
118 -1. Begründe bzw. plausibilisiere mittels Teilaufgabe (a) und graphisches Ableiten, dass {{formula}}\sin'=\cos{{/formula}} und {{formula}}\cos'=-\sin{{/formula}} gilt.
71 +1. Begründe bzw. plausibilisiere mittels Teilaufgabe (a) und der Graphen der Winkelfunktionen, dass {{formula}}\sin'=\cos{{/formula}} und {{formula}}\cos'=-\sin{{/formula}} gilt.
119 119  1. Zeige, dass aus {{formula}}\sin'=\cos{{/formula}} mittels Kettenregel {{formula}}\cos'=-\sin{{/formula}} folgt.
120 120  //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}\cos(x)=\sin(x-(-\pi/2)){{/formula}} von {{formula}}cos{{/formula}}.
121 121  1. Zeige die Ableitungsregeln für Winkelfunktionen auf S. 5 der Merkhilfe.