Wiki-Quellcode von Lösung Tangente in einem Kurvenpunkt
Version 3.1 von Martin Stern am 2025/10/13 10:18
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
3.1 | 1 | 1. |
![]() |
1.1 | 2 | {{formula}}f(x)=\frac{1}{5}x^3-\frac{16}{5}x{{/formula}} |
3 | {{formula}}f'(x)=\frac{3}{5}x^2-\frac{16}{5}{{/formula}} | ||
4 | {{formula}}f'(3)=\frac{11}{5}{{/formula}} | ||
5 | {{formula}}f(3)=-\frac{21}{5}{{/formula}} | ||
6 | Einsetzen von {{formula}}m=\frac{11}{5}{{/formula}} und {{formula}}P(3|-\frac{21}{5}){{/formula}} in {{formula}}y=mx+c{{/formula}}: | ||
7 | {{formula}}-\frac{21}{5}=\frac{11}{5}\cdot 3+c{{/formula}} | ||
8 | {{formula}}t: y= \frac{11}{5}x-\frac{54}{5}{{/formula}} | ||
![]() |
2.1 | 9 | |
10 | |||
![]() |
3.1 | 11 | 2. |
12 | Variante 1: {{formula}}f'(x)=m_t{{/formula}} | ||
13 | {{formula}}\frac{3}{5}x^2-\frac{16}{5}=\frac{11}{5}{{/formula}} | ||
14 | {{formula}}3x^2=27{{/formula}} | ||
15 | {{formula}}x^2=9{{/formula}} | ||
16 | {{formula}}x_1=3{{/formula}} und {{formula}}x_2=-3{{/formula}} | ||
17 | {{formula}}f(-3)=\frac{21}{5}=g(-3){{/formula}} | ||
18 | |||
19 | Variante 2: Argumentation mit Punktsymmetrie |