Änderungen von Dokument BPE 13 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/19 13:43
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -63,9 +63,38 @@ 63 63 1. Ermittle die Koordinaten derjenigen Punkte, die alle Graphen der Schar gemeinsam haben. 64 64 1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage: 65 65 //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.// 66 -Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}. 67 - 66 +1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}. 67 +[[image:Stau2.png||width="320" style="float: left"]] 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 68 68 Für {{formula}}k\geq4{{/formula}} werden die Punkte {{formula}}P\left(4\middle| h_k\left(4\right)\right),Q\left(4\middle| h_k^\prime\left(4\right)\right),R\left(2\middle| h_k\left(2\right)\right){{/formula}} und {{formula}}S\left(2\middle| h_k^\prime\left(2\right)\right){{/formula}} betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks. Begründe, dass jedes dieser Vierecke ein Trapez ist, und zeige, dass die folgende Aussage richtig ist: 69 -Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein. 77 +//Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.// 70 70 {{/aufgabe}} 79 + 80 +{{aufgabe id="Schalldruck1" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}} 81 +Gegeben ist die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a:\ \ x\mapsto e^x\cdot\left(x-a\right)^2{{/formula}} mit {{formula}}a\in\mathbb{R}{{/formula}}. Der Graph von {{formula}}f_a{{/formula}} wird mit {{formula}}G_a{{/formula}} bezeichnet. Jeder Graph der Schar hat genau einen Hochpunkt und genau einen Tiefpunkt. Die Abbildung 1 zeigt {{formula}}G_\frac{3}{2}{{/formula}}. 82 +1. {{formula}}G_\frac{3}{2}{{/formula}} nimmt in einem seiner Wendepunkte seine kleinste Steigung an. Bestimme diese Steigung rechnerisch. 83 +1. {{formula}}G_a{{/formula}} hat mit jeder der beiden Koordinatenachsen genau einen gemeinsamen Punkt. Gib die Koordinaten dieser Punkte an und begründe, dass der gemeinsame Punkt mit der x-Achse der Tiefpunkt von {{formula}}G_a{{/formula}} ist. 84 +1. Es gibt einen positiven Wert von {{formula}}a{{/formula}}, für den {{formula}}G_a{{/formula}} und die Koordinatenachsen eine Fläche mit dem Inhalt 3 einschließen. Bestimme diesen Wert von {{formula}}a{{/formula}}. 85 +1. Für jeden Wert von {{formula}}a{{/formula}} mit {{formula}}a\neq0{{/formula}} schließt die Gerade durch die beiden Extrempunkte von {{formula}}G_a{{/formula}} mit den Koordinatenachsen ein Dreieck ein. Berechne denjenigen Wert von {{formula}}a{{/formula}}, für den dieses Dreieck gleichschenklig ist. 86 + 87 +Betrachtet werden die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_{a,b}:\ \ x\mapsto e^x\cdot\left(\left(x-a+b\right)^2-b\right){{/formula}} mit {{formula}}a,b\in\mathbb{R}{{/formula}}. Es gilt {{formula}}f_{a,0}\left(x\right)=f_a\left(x\right){{/formula}}. Der Graph von {{formula}}f_{a,b}{{/formula}} wird mit {{formula}}G_{a,b}{{/formula}} bezeichnet. 88 + 89 +5. Für positive Werte von {{formula}}b{{/formula}} hat {{formula}}G_{a,b}{{/formula}} zwei Schnittpunkte mit der x-Achse. Für jeden Wert von {{formula}}a{{/formula}} wird der Abstand dieser beiden Schnittpunkte betrachtet. Zeige rechnerisch, dass dieser Abstand unabhängig von {{formula}}a{{/formula}} ist. 90 + 91 +Erhöht man im Term von {{formula}}f_{a,b}{{/formula}} den Wert von {{formula}}b{{/formula}} um 1, so erhält man einen Term der ersten Ableitungsfunktion von {{formula}}f_{a,b}{{/formula}}. Es gilt also {{formula}}f_{a,b}^\prime\left(x\right)=f_{a,b+1}\left(x\right){{/formula}}. 92 + 93 +6. Die Abbildung 2 zeigt für einen bestimmten Wert von {{formula}}a{{/formula}} die Graphen zweier Funktionen der Schar, bei denen sich die Werte von {{formula}}b{{/formula}} um 1 unterscheiden. 94 +Entscheide, welcher der beiden Graphen I und II zum größeren Wert von {{formula}}b{{/formula}} gehört, und begründe deine Entscheidung. 95 + 96 +7. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \ \land\ \ f_{a,1}\left(a\right)=0\ \ \land\ \ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an. 97 + 98 +{{/aufgabe}} 99 + 71 71 {{seitenreflexion/}}