Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 31.2
bearbeitet von akukin
am 2024/03/26 21:38
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 20.1
bearbeitet von akukin
am 2024/03/21 19:26
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -37,18 +37,8 @@
37 37  {{/aufgabe}}
38 38  
39 39  {{aufgabe id="Stau1" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
40 -[[image:Stauabb1.png||width="180" style="float: right"]]
41 41  Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
42 -An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit
43 -{{formula}}
44 -\begin{align*}
45 -f\left(x\right)=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2 \\
46 -&=-\frac{4}{16}x^4+3x^3-9x^2+8x
47 -\end{align*}
48 -{{/formula}}
49 -beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
50 -Die Abbildung 1 zeigt den Graphen von f für 0\le x\le4.
51 -Für die erste Ableitungsfunktion von f gilt f^\prime\left(x\right)=\left(5x^2-16x+8\right)\cdot\left(1-\frac{x}{4}\right).
41 +An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2{{/formula}} beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
52 52  1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von f, dass es keine weiteren solchen Zeitpunkte gibt.
53 53  1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an.
54 54  1. Bestimme den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt. Zeige, dass der zugehörige Wert der momentanen Änderungsrate zwischen 2 km/h und 3 km/h liegt.
... ... @@ -96,13 +96,13 @@
96 96  1. Es gibt einen positiven Wert von {{formula}}a{{/formula}}, für den {{formula}}G_a{{/formula}} und die Koordinatenachsen eine Fläche mit dem Inhalt 3 einschließen. Bestimme diesen Wert von {{formula}}a{{/formula}}.
97 97  1. Für jeden Wert von {{formula}}a{{/formula}} mit {{formula}}a\neq0{{/formula}} schließt die Gerade durch die beiden Extrempunkte von {{formula}}G_a{{/formula}} mit den Koordinatenachsen ein Dreieck ein. Berechne denjenigen Wert von {{formula}}a{{/formula}}, für den dieses Dreieck gleichschenklig ist.
98 98  
99 -Betrachtet werden die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_{a,b}:\ x\mapsto e^x\cdot\left(\left(x-a+b\right)^2-b\right){{/formula}} mit {{formula}}a,b\in\mathbb{R}{{/formula}}. Es gilt {{formula}}f_{a,0}\left(x\right)=f_a\left(x\right){{/formula}}. Der Graph von {{formula}}f_{a,b}{{/formula}}wird mit {{formula}}G_{a,b}{{/formula}} bezeichnet.
100 -(% style="list-style:" start="5" %)
101 -1. Für positive Werte von {{formula}}b{{/formula}} hat {{formula}}G_{a,b}{{/formula}} zwei Schnittpunkte mit der x-Achse. Für jeden Wert von {{formula}}a{{/formula}} wird der Abstand dieser beiden Schnittpunkte betrachtet. Zeige rechnerisch, dass dieser Abstand unabhängig von {{formula}}a{{/formula}} ist.
89 +Betrachtet werden die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_{a,b}:\ \ x\mapsto e^x\cdot\left(\left(x-a+b\right)^2-b\right){{/formula}} mit {{formula}}a,b\in\mathbb{R}{{/formula}}. Es gilt {{formula}}f_{a,0}\left(x\right)=f_a\left(x\right){{/formula}}. Der Graph von {{formula}}f_{a,b}{{/formula}} wird mit {{formula}}G_{a,b}{{/formula}} bezeichnet.
90 +
91 +5. Für positive Werte von {{formula}}b{{/formula}} hat {{formula}}G_{a,b}{{/formula}} zwei Schnittpunkte mit der x-Achse. Für jeden Wert von {{formula}}a{{/formula}} wird der Abstand dieser beiden Schnittpunkte betrachtet. Zeige rechnerisch, dass dieser Abstand unabhängig von {{formula}}a{{/formula}} ist.
102 102  
103 103  Erhöht man im Term von {{formula}}f_{a,b}{{/formula}} den Wert von {{formula}}b{{/formula}} um 1, so erhält man einen Term der ersten Ableitungsfunktion von {{formula}}f_{a,b}{{/formula}}. Es gilt also {{formula}}f_{a,b}^\prime\left(x\right)=f_{a,b+1}\left(x\right){{/formula}}.
104 -(% style="list-style:" start="6" %)
105 -1. Die //Abbildung 2// zeigt für einen bestimmten Wert von {{formula}}a{{/formula}} die Graphen zweier Funktionen der Schar, bei denen sich die Werte von {{formula}}b{{/formula}} um 1 unterscheiden. Entscheide, welcher der beiden Graphen I und II zum größeren Wert von {{formula}}b{{/formula}} gehört, und begründe deine Entscheidung.
94 +
95 +6. Die //Abbildung 2// zeigt für einen bestimmten Wert von {{formula}}a{{/formula}} die Graphen zweier Funktionen der Schar, bei denen sich die Werte von {{formula}}b{{/formula}} um 1 unterscheiden. Entscheide, welcher der beiden Graphen I und II zum größeren Wert von {{formula}}b{{/formula}} gehört, und begründe deine Entscheidung.
106 106  [[image:Schalldruckabb2.png||width="180" style="float: left"]]
107 107  
108 108  
... ... @@ -112,58 +112,9 @@
112 112  
113 113  
114 114  
115 -(% style="list-style:" start="7" %)
116 -1. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \land\ f_{a,1}\left(a\right)=0\ \land\ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an.
105 +
106 +7. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \land\ f_{a,1}\left(a\right)=0\ \land\ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an.
117 117  
118 118  {{/aufgabe}}
119 119  
120 -{{aufgabe id="Schalldruck2" afb="II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}}
121 -Der Schalldruckpegel eines bestimmten Wecktons wird durch die in {{formula}}\left[0;4\right]{{/formula}} definierte Funktion
122 -
123 -{{formula}}
124 -h: x\mapsto
125 -\begin{cases}
126 -20 \cdot \sin(x) \ &\text{für} \ 0 \leq x \leq 2 \\
127 - 20 \cdot \sin(x-2) +20 \cdot \sin(2) \ &\text{für} \ 2<x\leq 4
128 -\end{cases}
129 -{{/formula}}
130 -
131 -beschrieben. Dabei ist {{formula}}x{{/formula}} die seit Beginn des Wecktons vergangene Zeit in Sekunden und {{formula}}h\left(x\right){{/formula}} der Schalldruckpegel in Dezibel (dB). Die //Abbildung 3// zeigt einen Teil des Graphen von {{formula}}h{{/formula}}.
132 -[[image:Schalldruckabb3.png||width="150" style="display:block;margin-left:auto;margin-right:auto"]]
133 -1. Zeige, dass der Graph von {{formula}}h{{/formula}} bei {{formula}}x=2{{/formula}} keinen Sprung aufweist, und vervollständige den Graphen von {{formula}}h{{/formula}} in der //Abbildung 3//.
134 -1. Berechne den Zeitpunkt, zu dem der Weckton den größten Schalldruckpegel hat, und gib diesen Schalldruckpegel an.
135 -1. Berechne unter Verwendung der folgenden Information den durchschnittlichen Funktionswert von {{formula}}h{{/formula}}.
136 -//Der durchschnittliche Funktionswert von {{formula}}h{{/formula}} im Intervall {{formula}}\left[a;b\right]{{/formula}} stimmt mit der Höhe eines Rechtecks überein, das die beiden folgenden Eigenschaften hat:
137 - • Das Rechteck hat die Breite {{formula}}b-a{{/formula}}.
138 - • Das Rechteck hat den gleichen Inhalt wie die Fläche, die für {{formula}}a\le x\le b{{/formula}} zwischen dem Graphen von {{formula}}h{{/formula}} und der x-Achse liegt. //
139 -(% style="list-style:" start="4" %)
140 -1. Dem Graphen von {{formula}}h{{/formula}} ist zu entnehmen, dass der Weckton bestimmte Schalldruckpegel mehr als einmal annimmt. Zwei Zeitpunkte mit gleichem Schalldruckpegel haben jeweils einen bestimmten Abstand. Bestimme rechnerisch den größten dieser Abstände.
141 -
142 -{{/aufgabe}}
143 -
144 -{{aufgabe id="Hängebrücke" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_9.pdf]]" niveau="e" tags="iqb"}}
145 -Die //Abbildung 1// zeigt schematisch die achsensymmetrische Seitenansicht einer Hängebrücke. Die beiden vertikalen Pfeiler haben einen Abstand von 400 m. Die Wasseroberfläche liegt 20 m unterhalt der Fahrbahn.
146 -[[image:Hängebrücke.PNG||width="650" style="display:block;margin-left:auto;margin-right:auto"]]
147 -Die beiden Pfeiler gliedern die Brücke in einen linken, einen mittleren und einen rechten Abschnitt. Am oberen Ende jedes Pfeilers ist sowohl das Tragseil des mittleren Abschnitts als auch das Abspannseil des linken bzw. rechten Abschnitts befestigt. Die beiden Abspannseile sind am jeweiligen Ende der Fahrbahn verankert.
148 -Im verwendeten Koordinatensystem entspricht eine Längeneinheit 10 m in der Realität.
149 -In der Seitenansicht der Brücke verläuft die x-Achse entlang der horizontal verlaufenden Fahrbahn, die y-Achse entlang der Symmetrieachse.
150 -1. Im rechten Abschnitt der Brücke wird der Verlauf des Abspannseils modellhaft durch
151 -den Funktionsterm {{formula}}r(x)=\frac{253}{100}\cdot \left(e^{\frac{1}{11}\cdot (32-x)}-1 \right){{/formula}} beschrieben.
152 -(% style="list-style: lower-alpha" %)
153 -1*. Zeige, dass die Fahrbahn der Brücke insgesamt 640 m lang ist.
154 -1*. Auch im linken Abschnitt der Brücke kann der Verlauf des Abspannseils im Modell durch einen Funktionsterm beschrieben werden. Gib einen passenden Term {{formula}}l(x){{/formula}} sowie das Intervall an, in dem dieser Term das Abspannseil darstellt.
155 -1*. Berechne die Höhe der Pfeiler über der Wasseroberfläche.
156 -1*. Berechne die Größe des Winkels, unter dem das rechte Abspannseil auf den zugehörigen Pfeiler trifft
157 -1*. In der Seitenansicht begrenzen der rechte Pfeiler, das zugehörige Abspannseil und die Fahrbahn ein Flächenstück. Berechne dessen Inhalt in der Realität.
158 -1. Im Folgenden wird der mittlere Abschnitt der Brücke betrachtet. Die vertikal verlaufenden Halteseile verbinden die Fahrbahn mit dem Tragseil. Man hat sowohl von den Pfeilern als auch untereinander einen horizontalen Abstand von 16 m.
159 -Der Verlauf des Tragseils wird modellhaft durch den Funktionsterm {{formula}}s(x)=\left(\frac{1}{8}\right)^6\cdot \left(x^4+2560x^2\right)+\frac{125}{256}{{/formula}} beschrieben.
160 -(% style="list-style: lower-alpha" %)
161 -1*. Begründe, dass der Term von {{formula}}s{{/formula}} damit in Einklang steht, dass die Seitenansicht der Brücke achsensymmetrisch ist.
162 -1*. Zwei Punkte des Tragseils in der rechten Hälfte des mittleren Abschnitts haben einen horizontalen Abstand von 40 m und einen Höhenunterschied von 5 m. Gib eine Gleichung an, deren Lösung die x-Koordinate des höher liegenden Punkts im Modell ist.
163 -1*. Gib die Bedeutung des Terms {{formula}}\left(\sum\limits_{k=1}^{24}s(-20+1,6\cdot k)\right)\cdot 10{{/formula}} im Sachzusammenhang an und begründe deine Angabe.
164 -1*. Die Lösung der Gleichung {{formula}}\frac{s(x)-0}{x-20}\cdot s^\prime(x)=-1{{/formula}}ermöglicht die Berechnung eines Abstands im Sachzusammenhang. Gib an, um welchen Abstand es sich handelt, und begründe deine Angabe.
165 -1*. [[image:KreisbogenHängebrücke.PNG||width="220" style="float: right"]]
166 -Der Verlauf des Tragseils kann näherungsweise durch einen Kreisbogen beschrieben werden. Dazu dient der Kreis mit dem Mittelpunkt {{formula}}M\left(0|\frac{1699}{36}\right){{/formula}}, der durch die Punkte {{formula}}A\left(-20|5\right), B\left(20|5\right) \ \text{und} \ C\left(0|\frac{1}{2}\right){{/formula}} verläuft //(vgl. Abbildung 2)//. Berechne unter Verwendung des Kreisbogens die Länge des Tragseils.
167 -{{/aufgabe}}
168 -
169 169  {{seitenreflexion/}}
Hängebrücke.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -94.9 KB
Inhalt
KreisbogenHängebrücke.PNG
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -33.0 KB
Inhalt
Schalldruckabb3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Inhalt
Stauabb1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -6.4 KB
Inhalt
Stauabb2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -12.8 KB
Inhalt
GraphStau.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +20.3 KB
Inhalt