Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 35.1
bearbeitet von akukin
am 2024/03/26 23:14
Änderungskommentar: Neues Bild Stauabb2.png hochladen
Auf Version 35.2
bearbeitet von akukin
am 2024/03/26 23:14
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -80,6 +80,62 @@
80 80  //Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.//
81 81  {{/aufgabe}}
82 82  
83 +
84 +{{aufgabe id="Stau WTR" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
85 +
86 +[[image:Stauabb1.png||width="180" style="float: right"]]
87 +Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
88 +An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit
89 +
90 +{{formula}}
91 +\begin{align*}
92 +f\left(x\right)&=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2 \\
93 +&=-\frac{4}{16}x^4+3x^3-9x^2+8x
94 +\end{align*}
95 +{{/formula}}
96 +
97 +beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
98 +Die //Abbildung 1// zeigt den Graphen von {{formula}}f{{/formula}} für {{formula}}0\le x\le4{{/formula}}.
99 +Für die erste Ableitungsfunktion von {{formula}}f{{/formula}} gilt {{formula}}f^\prime\left(x\right)=\left(5x^2-16x+8\right)\cdot\left(1-\frac{x}{4}\right){{/formula}}.
100 +1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von f, dass es keine weiteren solchen Zeitpunkte gibt.
101 +1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an.
102 +1. Bestimme rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt.
103 +1. Gib den Zeitpunkt an, zu dem der Stau am längsten ist. Begründe deine Angabe.
104 +
105 +Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3{{/formula}} von Bedeutung.
106 +
107 +(% style="list-style:" start="5" %)
108 +1. Begründe, dass die folgende Aussage richtig ist:
109 +//Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.//
110 +Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.
111 +1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
112 +[[image:Stauabb2.png||width="250" style="float: right"]]
113 +1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der //Abbildung 2// gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
114 +Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 2//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 2//.
115 +
116 +Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.
117 +1. Gib in Abhängigkeit von {{formula}}k{{/formula}} das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} an und begründe deine Angabe.
118 +1. Ermittle die Koordinaten der beiden Punkte, die alle Graphen der Schar gemeinsam haben.
119 +1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
120 +//Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
121 +1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der //Abbildung 2// für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der //Abbildung 3// für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
122 +[[image:Stau2.png||width="320" style="float: left"]]
123 +
124 +
125 +
126 +
127 +
128 +
129 +
130 +
131 +Für {{formula}}k\geq4{{/formula}} werden die Punkte {{formula}}P\left(4\middle| h_k\left(4\right)\right),Q\left(4\middle| h_k^\prime\left(4\right)\right),R\left(2\middle| h_k\left(2\right)\right){{/formula}} und {{formula}}S\left(2\middle| h_k^\prime\left(2\right)\right){{/formula}} betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks. Begründe, dass jedes dieser Vierecke ein Trapez ist, und zeige, dass die folgende Aussage richtig ist:
132 +//Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.//
133 +{{/aufgabe}}
134 +
135 +{{/aufgabe}}
136 +
137 +
138 +
83 83  {{aufgabe id="Schalldruck1" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}}
84 84  [[image:Schalldruckabb1.png||width="230" style="float: right"]]
85 85  Gegeben ist die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a:\ x\mapsto e^x\cdot\left(x-a\right)^2{{/formula}} mit {{formula}}a\in\mathbb{R}{{/formula}}. Der Graph von {{formula}}f_a{{/formula}} wird mit {{formula}}G_a{{/formula}} bezeichnet. Jeder Graph der Schar hat genau einen Hochpunkt und genau einen Tiefpunkt. Die //Abbildung 1// zeigt {{formula}}G_\frac{3}{2}{{/formula}}.