Änderungen von Dokument BPE 13 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/19 13:43
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -51,12 +51,12 @@ 51 51 1. Begründe, dass die folgende Aussage richtig ist: 52 52 //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.// 53 53 Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat. 54 -1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme nSiefür diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.54 +1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge. 55 55 1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem 56 56 die Staulänge 0,5 km geringer ist als eine Stunde vorher. 57 57 [[image:GraphStau.png||width="250" style="float: right"]] 58 58 1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde. 59 -Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere nSiediesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//.59 +Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//. 60 60 61 61 (% style="list-style:" start="2" %) 62 62 1. Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.