Änderungen von Dokument BPE 13 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/19 13:43
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 2 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -51,12 +51,12 @@ 51 51 1. Begründe, dass die folgende Aussage richtig ist: 52 52 //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.// 53 53 Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat. 54 -1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge. 54 +1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimmen Sie für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge. 55 55 1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem 56 56 die Staulänge 0,5 km geringer ist als eine Stunde vorher. 57 57 [[image:GraphStau.png||width="250" style="float: right"]] 58 58 1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde. 59 -Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//. 59 +Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//. 60 60 61 61 (% style="list-style:" start="2" %) 62 62 1. Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}. ... ... @@ -80,61 +80,6 @@ 80 80 //Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.// 81 81 {{/aufgabe}} 82 82 83 - 84 -{{aufgabe id="Stau WTR" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}} 85 -1. [[image:Stauabb1.png||width="180" style="float: right"]] 86 -Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau. 87 -An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit 88 - 89 -{{formula}} 90 -\begin{align*} 91 -f\left(x\right)&=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2 \\ 92 -&=-\frac{4}{16}x^4+3x^3-9x^2+8x 93 -\end{align*} 94 -{{/formula}} 95 - 96 -beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an. 97 -Die //Abbildung 1// zeigt den Graphen von {{formula}}f{{/formula}} für {{formula}}0\le x\le4{{/formula}}. 98 -Für die erste Ableitungsfunktion von {{formula}}f{{/formula}} gilt {{formula}}f^\prime\left(x\right)=\left(5x^2-16x+8\right)\cdot\left(1-\frac{x}{4}\right){{/formula}}. 99 -(% style="list-style: lower-alpha" %) 100 -1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von {{formula}}f{{/formula}}, dass es keine weiteren solchen Zeitpunkte gibt. 101 -1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an. 102 -1. Bestimme rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt. 103 -1. Gib den Zeitpunkt an, zu dem der Stau am längsten ist. Begründe deine Angabe. 104 - 105 -Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3=-\frac{1}{16}x^5+\frac{3}{4}x^4-3x^3+4x^2{{/formula}} von Bedeutung. 106 - 107 -(% style="list-style:" start="5" %) 108 -1. Begründe, dass die folgende Aussage richtig ist: 109 -//Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.// 110 -Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat. 111 -1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge. 112 -[[image:Stauabb2.png||width="250" style="float: right"]] 113 -1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der //Abbildung 2// gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde. 114 -Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 2//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 2//. 115 - 116 -Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}. 117 -1. Gib in Abhängigkeit von {{formula}}k{{/formula}} das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} an und begründe deine Angabe. 118 -1. Ermittle die Koordinaten der beiden Punkte, die alle Graphen der Schar gemeinsam haben. 119 -1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage: 120 -//Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.// 121 -1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der //Abbildung 2// für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der //Abbildung 3// für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}. 122 -[[image:Stau2.png||width="320" style="float: left"]] 123 - 124 - 125 - 126 - 127 - 128 - 129 - 130 - 131 -Für {{formula}}k\geq4{{/formula}} werden die Punkte {{formula}}P\left(4\middle| h_k\left(4\right)\right),Q\left(4\middle| h_k^\prime\left(4\right)\right),R\left(2\middle| h_k\left(2\right)\right){{/formula}} und {{formula}}S\left(2\middle| h_k^\prime\left(2\right)\right){{/formula}} betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks. Begründe, dass jedes dieser Vierecke ein Trapez ist, und zeige, dass die folgende Aussage richtig ist: 132 -//Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.// 133 -{{/aufgabe}} 134 - 135 - 136 - 137 - 138 138 {{aufgabe id="Schalldruck1" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}} 139 139 [[image:Schalldruckabb1.png||width="230" style="float: right"]] 140 140 Gegeben ist die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a:\ x\mapsto e^x\cdot\left(x-a\right)^2{{/formula}} mit {{formula}}a\in\mathbb{R}{{/formula}}. Der Graph von {{formula}}f_a{{/formula}} wird mit {{formula}}G_a{{/formula}} bezeichnet. Jeder Graph der Schar hat genau einen Hochpunkt und genau einen Tiefpunkt. Die //Abbildung 1// zeigt {{formula}}G_\frac{3}{2}{{/formula}}.
- Stauabb1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -6.4 KB - Inhalt
- Stauabb2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -12.8 KB - Inhalt