Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 36.3
bearbeitet von akukin
am 2024/03/26 23:22
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 33.4
bearbeitet von akukin
am 2024/03/26 22:32
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -51,12 +51,12 @@
51 51  1. Begründe, dass die folgende Aussage richtig ist:
52 52  //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.//
53 53  Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.
54 -1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
54 +1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimmen Sie für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
55 55  1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem
56 56   die Staulänge 0,5 km geringer ist als eine Stunde vorher.
57 57  [[image:GraphStau.png||width="250" style="float: right"]]
58 58  1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
59 -Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//.
59 +Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//.
60 60  
61 61  (% style="list-style:" start="2" %)
62 62  1. Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.
... ... @@ -80,61 +80,6 @@
80 80  //Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.//
81 81  {{/aufgabe}}
82 82  
83 -
84 -{{aufgabe id="Stau WTR" afb="I, II, III" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_6.pdf]]" niveau="e" tags="iqb"}}
85 -1. [[image:Stauabb1.png||width="180" style="float: right"]]
86 -Auf einer Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
87 -An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit
88 -
89 -{{formula}}
90 -\begin{align*}
91 -f\left(x\right)&=x\cdot\left(8-5x\right)\cdot\left(1-\frac{x}{4}\right)^2 \\
92 -&=-\frac{4}{16}x^4+3x^3-9x^2+8x
93 -\end{align*}
94 -{{/formula}}
95 -
96 -beschrieben werden. Dabei gibt {{formula}}x{{/formula}} die nach 06:00 Uhr vergangene Zeit in Stunden und {{formula}}f\left(x\right){{/formula}} die momentane Änderungsrate der Staulänge in Kilometer pro Stunde an.
97 -Die //Abbildung 1// zeigt den Graphen von {{formula}}f{{/formula}} für {{formula}}0\le x\le4{{/formula}}.
98 -Für die erste Ableitungsfunktion von {{formula}}f{{/formula}} gilt {{formula}}f^\prime\left(x\right)=\left(5x^2-16x+8\right)\cdot\left(1-\frac{x}{4}\right){{/formula}}.
99 -(% style="list-style: lower-alpha" %)
100 -1. Nenne die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründe anhand der Struktur des Funktionsterms von {{formula}}f{{/formula}}, dass es keine weiteren solchen Zeitpunkte gibt.
101 -1. Es gilt {{formula}}f\left(2\right)<0{{/formula}}. Gib die Bedeutung dieser Tatsache im Sachzusammenhang an.
102 -1. Bestimme rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt.
103 -1. Gib den Zeitpunkt an, zu dem der Stau am längsten ist. Begründe deine Angabe.
104 -
105 -Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3=-\frac{1}{16}x^5+\frac{3}{4}x^4-3x^3+4x^2{{/formula}} von Bedeutung.
106 -
107 -(% style="list-style:" start="5" %)
108 -1. Begründe, dass die folgende Aussage richtig ist:
109 -//Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.//
110 -Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.
111 -1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
112 -[[image:Stauabb2.png||width="250" style="float: right"]]
113 -1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der //Abbildung 2// gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
114 -Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 2//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 2//.
115 -
116 -Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.
117 -1. Gib in Abhängigkeit von {{formula}}k{{/formula}} das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} an und begründe deine Angabe.
118 -1. Ermittle die Koordinaten der beiden Punkte, die alle Graphen der Schar gemeinsam haben.
119 -1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
120 -//Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
121 -1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der //Abbildung 2// für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der //Abbildung 3// für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
122 -[[image:Stau2.png||width="320" style="float: left"]]
123 -
124 -
125 -
126 -
127 -
128 -
129 -
130 -
131 -Für {{formula}}k\geq4{{/formula}} werden die Punkte {{formula}}P\left(4\middle| h_k\left(4\right)\right),Q\left(4\middle| h_k^\prime\left(4\right)\right),R\left(2\middle| h_k\left(2\right)\right){{/formula}} und {{formula}}S\left(2\middle| h_k^\prime\left(2\right)\right){{/formula}} betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks. Begründe, dass jedes dieser Vierecke ein Trapez ist, und zeige, dass die folgende Aussage richtig ist:
132 -//Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.//
133 -{{/aufgabe}}
134 -
135 -
136 -
137 -
138 138  {{aufgabe id="Schalldruck1" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}}
139 139  [[image:Schalldruckabb1.png||width="230" style="float: right"]]
140 140  Gegeben ist die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a:\ x\mapsto e^x\cdot\left(x-a\right)^2{{/formula}} mit {{formula}}a\in\mathbb{R}{{/formula}}. Der Graph von {{formula}}f_a{{/formula}} wird mit {{formula}}G_a{{/formula}} bezeichnet. Jeder Graph der Schar hat genau einen Hochpunkt und genau einen Tiefpunkt. Die //Abbildung 1// zeigt {{formula}}G_\frac{3}{2}{{/formula}}.
Stauabb1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -6.4 KB
Inhalt
Stauabb2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -12.8 KB
Inhalt