Änderungen von Dokument BPE 16 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/18 20:31
Von Version 23.1
bearbeitet von Holger Engels
am 2024/02/05 16:26
am 2024/02/05 16:26
Änderungskommentar:
Neues Bild gleichschenkligesdreieckabb2.png hochladen
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -77,4 +77,18 @@ 77 77 7. Nun wird die Pyramide {{formula}}ABCD_6{{/formula}} , d. h. diejenige für {{formula}}k=6{{/formula}}, betrachtet.[[image:gleichschenkligesdreieckabb3.PNG||width="220" style="float: right"]] Dieser Pyramide werden Quader einbeschrieben (vgl. Abbildung 3). Die Grundflächen der Quader liegen in der x,,1,,x,,2,,-Ebene, haben den Eckpunkt {{formula}}A{{/formula}} gemeinsam und sind quadratisch. Die Höhe {{formula}}h{{/formula}} der Quader durchläuft alle reellen Werte mit {{formula}}0<h<6{{/formula}}. Für jeden Wert von {{formula}}h{{/formula}}liegt der Eckpunkt {{formula}}Q_h{{/formula}} in der Seitenfläche {{formula}}BCD_6{{/formula}} der Pyramide. Ermittle die Koordinaten des Punkts {{formula}}Q_h{{/formula}}. 78 78 {{/aufgabe}} 79 79 80 +{{aufgabe id="Raute" afb="" kompetenzen="K1, K2, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_4.pdf]]" niveau="e" tags="iqb"}} 81 +Gegeben sind die Punkte {{formula}}A\left(3\left|5\right|5\right){{/formula}} und {{formula}}B\left(1\left|1\right|1\right){{/formula}} sowie die Geraden {{formula}}g{{/formula}} und {{formula}}h{{/formula}}, die sich in {{formula}}B{{/formula}} schneiden. 82 +Die Gerade {{formula}}g{{/formula}} hat den Richtungsvektor {{formula}}\left(\begin{array}{c} 1 \\ 2 \\ 2 \end{array}\right){{/formula}}, die Gerade {{formula}}h{{/formula}} den Richtungsvektor {{formula}}\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right){{/formula}}. 83 + 84 +1. Weise nach, dass {{formula}}A{{/formula}} auf {{formula}}g{{/formula}} liegt. 85 +1. Bestimme die Koordinaten zweier Punkte {{formula}}C{{/formula}} und {{formula}}D{{/formula}} so, dass {{formula}}C{{/formula}} auf {{formula}}h{{/formula}} liegt und das Viereck {{formula}}ABCD{{/formula}} eine Raute ist. 86 +{{/aufgabe}} 87 + 88 +{{aufgabe id="Geradenschar" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_5.pdf]]" niveau="e" tags="iqb"}} 89 +Gegeben ist die Gerade {{formula}}g:\vec{x}=\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)+λ\cdot \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right){{/formula}} mit {{formula}}\lambda\in\mathbb{R}{{/formula}} 90 +1. Zeige, dass {{formula}}g{{/formula}} in der Ebene mit der Gleichung {{formula}}x+y+z=2{{/formula}} liegt. 91 +1. Gegeben ist außerdem die Schar der Geraden {{formula}}h_a:\vec{x}=\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)+μ\cdot \left(\begin{array}{c} 1 \\ a \\ 0 \end{array}\right){{/formula}} mit {{formula}}\mu,a\in\mathbb{R}{{/formula}}. Weise nach, dass {{formula}}g{{/formula}} und {{formula}}h_a{{/formula}} für jeden Wert von a windschief sind. 92 +{{/aufgabe}} 93 + 80 80 {{seitenreflexion/}}
- gleichschenkligesdreieckabb3.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.holgerengels - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +12.7 KB - Inhalt