Änderungen von Dokument BPE 16 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/18 20:31
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -84,9 +84,20 @@ 84 84 1. Weise nach, dass {{formula}}A{{/formula}} auf {{formula}}g{{/formula}} liegt. 85 85 1. Bestimme die Koordinaten zweier Punkte {{formula}}C{{/formula}} und {{formula}}D{{/formula}} so, dass {{formula}}C{{/formula}} auf {{formula}}h{{/formula}} liegt und das Viereck {{formula}}ABCD{{/formula}} eine Raute ist. 86 86 {{/aufgabe}} 87 + 87 87 {{aufgabe id="Geradenschar" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_5.pdf]]" niveau="e" tags="iqb"}} 88 88 Gegeben ist die Gerade {{formula}}g:\vec{x}=\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)+λ\cdot \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right){{/formula}} mit {{formula}}\lambda\in\mathbb{R}{{/formula}} 89 89 1. Zeige, dass {{formula}}g{{/formula}} in der Ebene mit der Gleichung {{formula}}x+y+z=2{{/formula}} liegt. 90 90 1. Gegeben ist außerdem die Schar der Geraden {{formula}}h_a:\vec{x}=\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)+μ\cdot \left(\begin{array}{c} 1 \\ a \\ 0 \end{array}\right){{/formula}} mit {{formula}}\mu,a\in\mathbb{R}{{/formula}}. Weise nach, dass {{formula}}g{{/formula}} und {{formula}}h_a{{/formula}} für jeden Wert von a windschief sind. 91 91 {{/aufgabe}} 93 + 94 +{{aufgabe id="Rechtwinklig-gleichschenkliges Dreieck" afb="" kompetenzen="K1, K2, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_6.pdf]]" niveau="e" tags="iqb"}} 95 +Betrachtet wird ein Dreieck {{formula}}ABC{{/formula}} mit {{formula}}A\left(0\left|0\right|0\right){{/formula}} und {{formula}}B\left(3\left|5\right|-4\right){{/formula}}. Das Dreieck hat die folgenden Eigenschaften: 96 +* Das Dreieck ist sowohl gleichschenklig als auch rechtwinklig. 97 +* {{formula}}\bar{AB}{{/formula}} ist eine Kathete des Dreiecks. 98 +* Die zweite Kathete des Dreiecks liegt in der x,,1,,x,,3,,-Ebene. 99 + 100 +Ermittle die Koordinaten eines Punkts, der für {{formula}}C{{/formula}} in Frage kommt. 101 +{{/aufgabe}} 102 + 92 92 {{seitenreflexion/}}