Änderungen von Dokument Lösung Doppelpyramide
Zuletzt geändert von akukin am 2024/02/02 12:41
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -2,5 +2,20 @@ 2 2 Somit ist {{formula}}|\overrightarrow{AB}|= |\overrightarrow{BC}|=10{{/formula}} und das Dreieck ist gleichschenklig. 3 3 1. Wegen {{formula}}\overrightarrow{AB} \circ \overrightarrow{BC}=0{{/formula}} schließen die Strecken {{formula}}\overline{AB}{{/formula}} und {{formula}}\overline{BC}{{/formula}} einen rechten Winkel ein. 4 4 Für den Punkt {{formula}}D(-5|-5|12){{/formula}}, der sich durch geometrische Überlegungen ergibt, gilt ebenfalls {{formula}}\overrightarrow{CD} \circ \overrightarrow{DA}=0{{/formula}}. Somit ist {{formula}}ABCD{{/formula}} ein Quadrat. 5 -1. {{formula}}\left(\begin{array}{c} x \\ y \\ z\end{array}\right) =r \cdot \overrightarrow{BC} + s \cdot \overrightarrow{BT}= r \cdot \left(\begin{array}{c} -10 \\ 0 \\ 0 \end{array}\right) + s \cdot \left(\begin{array}{c} -5 \\ -5 \\ -12 \end{array}\right) {{/formula}} liefert {{formula}}x= -10r-5s, y= -5s{{/formula}} und {{formula}}z=-12s{{/formula}}. Damit ergibt sich {{formula}}12y-5z=0{{/formula}}. 6 -1. {{formula}}\tan(\varphi)= \frac{\frac{1}{2}\cdot |\overline{ST}|}{\frac{1}{2}\cdot |\overline{AB}|} = \frac{12}{5} \Leftrightarrow \varphi= \tan^{-1}\Bigl(\frac{12}{5}\Bigl) \approx 67,4 \text{°}{{/formula}} 5 + 6 +3. {{formula}}\left(\begin{array}{c} x \\ y \\ z\end{array}\right) =r \cdot \overrightarrow{BC} + s \cdot \overrightarrow{BT}= r \cdot \left(\begin{array}{c} -10 \\ 0 \\ 0 \end{array}\right) + s \cdot \left(\begin{array}{c} -5 \\ -5 \\ -12 \end{array}\right) {{/formula}} liefert {{formula}}x= -10r-5s, y= -5s{{/formula}} und {{formula}}z=-12s{{/formula}}. Damit ergibt sich {{formula}}12y-5z=0{{/formula}}. 7 +(Alternativ kann man, um von der Parameterform auf die Koordinatenform zu kommen, das Skalarprodukt der beiden Spannvektoren berechnen und einen Punkt der Ebene/Stützpunkt einsetzen.) 8 + 9 +4. {{formula}}\tan(\varphi)= \frac{\frac{1}{2}\cdot |\overline{ST}|}{\frac{1}{2}\cdot |\overline{AB}|} = \frac{12}{5} \Leftrightarrow \varphi= \tan^{-1}\Bigl(\frac{12}{5}\Bigl) \approx 67,4 \text{°}{{/formula}} 10 + 11 +5. Für {{formula}}B{{/formula}} und {{formula}}C{{/formula}} gilt: {{formula}}k\cdot 5-5 \cdot 12 = 5k-60{{/formula}}. Somit liegt die Kante {{formula}}\overline{BC}{{/formula}} auf dieser Geraden. 12 + 13 +6. {{formula}}k \cdot 0 -5z= 5k-60 \Leftrightarrow z=12-k{{/formula}}, d.h. {{formula}}E_k{{/formula}} schneidet die z-Achse im Punkt {{formula}}(0|0|12-k){{/formula}}. Damit ergibt sich {{formula}}-12 \leq k \leq 0{{/formula}}. 14 + 15 +7. Da sich {{formula}}F{{/formula}} durch Spiegelungen an der xz-Ebene aus {{formula}}E{{/formula}} ergibt, ist {{formula}}\vec{n}=\left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right){{/formula}} ein Normalenvektor von {{formula}}F{{/formula}}. 16 + 17 + 18 +8. 19 +[[image:Skizzedoppelpyramide.PNG||width="180" style="float: left"]] Aus der Skizze ergibt sich {{formula}}y_{S'}= 24 \cdot \cos(90\text{°}-\varphi)\approx 22,2{{/formula}} 20 + 21 +{{formula}}\left(\begin{array}{c} 0 \\ k \\ -5 \end{array}\right) \circ \left(\begin{array}{c} 0 \\ -12 \\ -5 \end{array}\right)=0 \Leftrightarrow k= \frac{25}{12}{{/formula}}
- Skizzedoppelpyramide.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +12.5 KB - Inhalt