Änderungen von Dokument Lösung Oktaeder
Zuletzt geändert von akukin am 2024/10/01 17:25
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,81 +1,26 @@ 1 -=== Teilaufgabe 1 === 2 - 3 -{{detail summary="Erwartungshorizont"}} 4 -Kantenlänge des Würfels: {{formula}}\left|\overrightarrow{AC}\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{144}=12{{/formula}} 5 -{{/detail}} 6 - 7 - 8 -{{detail summary="Erläuterung der Lösung"}} 9 -Aus der Abbildung wird ersichtlich, dass die Länge der Strecke {{formula}}\overline{AC}{{/formula}} der gesuchten Kantenlänge entspricht. 10 -<br> 1 +1. (((Aus der Abbildung wird ersichtlich, dass die Länge der Strecke {{formula}}\overline{AC}{{/formula}} der gesuchten Kantenlänge entspricht. 11 11 {{formula}}A\left(1\left|2\right|1\right),C\left(-3\left|-6\right|9\right){{/formula}} 12 -<br> 13 13 {{formula}}\left|\overrightarrow{AC}\right|=\left|\overrightarrow{OC}-\overrightarrow{OA}\right|=\left|\left(\begin{array}{c} -3 \\ -6 \\ 9 \end{array}\right)-\left(\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right)\right|=\left|\left(\begin{array}{c} -4\\ -8 \\ 8 \end{array}\right)\right|=\sqrt{(-4)^2+(-8)^2+8^2}=\sqrt{144}=12{{/formula}} 14 14 15 -<br> 16 -Also ist die Kantenlänge des Würfels {{formula}}12{{/formula}}. 17 -{{/detail}} 5 +Also ist die Kantenlänge des Würfels 12. ))) 6 +1. (((Wir gehen bis zum Mittelpunkt {{formula}}M{{/formula}} des Quadrats {{formula}}ABCD{{/formula}}, das heißt bis zum Mittelpunkt der Diagonalen {{formula}}\overline{AC}{{/formula}}, und von dort aus in Richtung des Normalenvektors {{formula}}\vec{n}{{/formula}} von {{formula}}H{{/formula}}, da dieser senkrecht auf {{formula}}ABCD{{/formula}} steht. 18 18 19 - 20 -=== Teilaufgabe 2 === 21 - 22 -{{detail summary="Erwartungshorizont"}} 23 -Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AC}: M\left(-1\left|-2\right|5\right){{/formula}} 24 -<br> 25 -Normalenvektor von {{formula}}H: \ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \ \text{mit} \ \left|\vec{n}\right|=3{{/formula}} 26 -<br> 27 -Damit ergeben sich die Koordinaten eines der beiden Eckpunkte, die nicht in {{formula}}H{{/formula}} liegen, zu 28 -<br> 29 -{{formula}}\overrightarrow{OM}+2\cdot\vec{n}=\left(\begin{array}{c} 3\\ 0 \\ 9 \end{array}\right){{/formula}}. 30 - 31 -{{/detail}} 32 - 33 - 34 -{{detail summary="Erläuterung der Lösung"}} 35 -Wir gehen bis zum Mittelpunkt {{formula}}M{{/formula}} des Quadrats {{formula}}ABCD{{/formula}}, das heißt bis zum Mittelpunkt der Diagonalen {{formula}}\overline{AC}{{/formula}}, und von dort aus in Richtung des Normalenvektors {{formula}}\vec{n}{{/formula}} von {{formula}}H{{/formula}}, da dieser senkrecht auf {{formula}}ABCD{{/formula}} steht. 36 -<br> 37 -Da die Kantenlänge des Würfels {{formula}}12{{/formula}} ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus {{formula}}6{{/formula}} Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen. 38 -<br> 8 +Da die Kantenlänge des Würfels 12 ist (siehe Teilaufgabe 1.), müssen wir von {{formula}}M{{/formula}} aus 6 Längeneinheiten in Richtung {{formula}}\vec{n}{{/formula}} gehen. 39 39 Der Normalenvektor besteht aus den Koeffizienten der Gleichung der Ebene {{formula}}H{{/formula}} in Koordinatenform: 40 -<br> 41 41 {{formula}}H:\ 2x_1+x_2+2x_3=6 \ \Rightarrow\ \vec{n}=\left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right){{/formula}} 42 -<br> 43 43 Der Betrag von {{formula}}\vec{n}{{/formula}} ergibt: {{formula}}\left|\vec{n}\right|=\sqrt{2^2+1^2+2^2}=\sqrt{9}=3{{/formula}} 44 -<br> 45 -Da die Kantenlänge des Würfels {{formula}}12{{/formula}} ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen: 12 +Da die Kantenlänge des Würfels 12 ist und wir nur die Hälfte von {{formula}}M{{/formula}} aus nach oben gehen müssen, benötigen wir also den doppelten Normalenvektor {{formula}}2\vec{n}{{/formula}}, um von {{formula}}M{{/formula}} zum gesuchten Punkt {{formula}}P_1{{/formula}} zu gelangen: 46 46 47 -{{formula}} 48 -\begin{align} 49 -\overrightarrow{OP_1}&=\overrightarrow{OM}+2\cdot\vec{n} =\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+2\cdot\vec{n} \\ 50 -&=\frac{1}{2}\cdot 51 -\left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 52 -&=\frac{1}{2}\cdot 53 -\left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 54 -&= 14 +{{formula}}\overrightarrow{OP_1}=\overrightarrow{OM}+2\cdot\vec{n}=\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+2\cdot\vec{n}=\frac{1}{2}\cdot 15 +\left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)=\frac{1}{2}\cdot 16 +\left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)+2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right)= 55 55 \left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)+\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} 3 \\ 0 \\ 9 \end{array}\right) 56 -\end{align} 57 57 {{/formula}} 58 - 59 59 Einer der beiden gesuchten Punkte lautet also {{formula}}P_1\left(3\left|0\right|9\right){{/formula}}. 60 -<br> 61 61 Den anderen gesuchten Punkt (den unteren Punkt) {{formula}}P_2{{/formula}} erhält man, wenn man den doppelten Normalenvektor subtrahiert statt addiert: 62 62 63 -{{formula}} 64 -\begin{align} 65 -\overrightarrow{OP_2}&=\overrightarrow{OM}-2\cdot\vec{n} =\frac{1}{2}\cdot\left(\overrightarrow{OA}+\overrightarrow{OC}\right)-2\cdot\vec{n} \\ 66 -&=\frac{1}{2}\cdot 67 -\left(\begin{array}{c} 1+(-3) \\ 2+(-6) \\ 1+9 \end{array}\right)-2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 68 -&=\frac{1}{2}\cdot 69 -\left(\begin{array}{c} -2 \\ -4 \\ 10 \end{array}\right)-2 \cdot \left(\begin{array}{c} 2 \\ 1 \\ 2 \end{array}\right) \\ 70 -&= 71 -\left(\begin{array}{c} -1 \\ -2 \\ 5 \end{array}\right)-\left(\begin{array}{c} 4 \\ 2 \\ 4 \end{array}\right)= \left(\begin{array}{c} -5 \\ -4 \\ 1 \end{array}\right) 72 -\end{align} 73 -{{/formula}} 74 - 75 - 76 76 Der zweite Punkt lautet also {{formula}}P_2\left(-5\left|-4\right|1\right){{/formula}}. 77 -<br> 78 -<br> 23 + 79 79 __Hinweis__: Es ist jedoch nur nach einem der beiden Punkte gefragt. 80 -{{/detail}} 81 81 26 +)))