Wiki-Quellcode von Lösung Rasenfläche
Zuletzt geändert von Holger Engels am 2024/07/23 08:43
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | 1. Die Geradengleichung {{formula}}g{{/formula}} lautet {{formula}}g: \left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + \lambda \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) \quad (\lambda \in \mathbb{R}){{/formula}} und die Geradengleichung {{formula}}h{{/formula}} vom Punkt {{formula}}B{{/formula}} nach {{formula}}C{{/formula}} {{formula}}h: \left(\begin{array}{c} 18 \\ 0 \\ 1,5 \end{array}\right) + \mu \cdot \left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right) \quad (\mu \in \mathbb{R}){{/formula}}. | ||
2 | |||
3 | Gleichsetzen der beiden Geradengleichungen {{formula}}\left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + \lambda \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) = \left(\begin{array}{c} 18 \\ 0 \\ 1,5 \end{array}\right) + \mu \cdot \left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right){{/formula}} liefert folgendes Gleichungssystem: | ||
4 | |||
5 | {{formula}} | ||
6 | \begin{align} | ||
7 | \text{I} \quad 12 \lambda + 6\mu &= 14,4 \\ | ||
8 | \text{II} \quad 4 \lambda + 10 \mu &= 8 \\ | ||
9 | \text{III} \quad \lambda + 0,5 \mu &=1,2 | ||
10 | \end{align} | ||
11 | {{/formula}} | ||
12 | |||
13 | |||
14 | {{formula}}5 \cdot \text{I} - 3 \cdot \text{II}{{/formula}} liefert die Gleichung {{formula}}48 \lambda = 48 \Leftrightarrow \lambda = 1{{/formula}} | ||
15 | |||
16 | Einsetzen von {{formula}}\lambda = 1{{/formula}} in die Geradengleichung {{formula}}g{{/formula}} liefert | ||
17 | {{formula}}\left(\begin{array}{c} 3,6 \\ 8 \\ 0,3 \end{array}\right) + 1 \cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) =\left(\begin{array}{c} 15,6 \\ 4 \\ 1,3 \end{array}\right){{/formula}} | ||
18 | |||
19 | Somit ergibt sich der Punkt {{formula}}Q = (15,6|4|1,3){{/formula}}. | ||
20 | |||
21 | 2. Der Winkel zwischen den Richtungsvektoren der beiden Geraden ergibt sich durch | ||
22 | |||
23 | {{formula}} | ||
24 | \begin{align} | ||
25 | \cos(\varphi) &= \frac{\left|\left(\begin{array}{c} -6 \\ 10 \\ -0,5 \end{array}\right)\circ \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right)\right|}{\sqrt{(-6)^2+10^2+(-0,5)^2}\cdot \sqrt{12^2+(-4)^2+1^2}}= \frac{|(-6)\cdot 12+ 10 \cdot (-4)+ (-0,5)\cdot 1|}{\sqrt{36+100+0,25}\cdot \sqrt{144+16+1}}= \frac{|-112,5|}{\sqrt{136,25}\cdot \sqrt{161}}\\ | ||
26 | \Leftrightarrow \varphi &= \cos^{-1}\Biggl(\frac{112,5}{\sqrt{136,25}\cdot \sqrt{161}}\Biggl) \approx 41 \text{°} | ||
27 | \end{align} | ||
28 | {{/formula}} | ||
29 | |||
30 | |||
31 | |||
32 | 3. | ||
33 | [[image:Skizzerasenfläche.PNG||width="180" style="float: left"]] | ||
34 | Mithilfe der Skizze ergibt sich der Zusammenhang {{formula}}|\overline{QS}|= \frac{0,2}{\sin(\varphi)}\approx \frac{0,2}{\sin(41\text{°})}{{/formula}} | ||
35 | und damit {{formula}}\overrightarrow{OQ}-\frac{\left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right)}{\sqrt{12^2+(-4)^2+1^2}} \cdot |\overline{QS}|= \left(\begin{array}{c} 15,6 \\ 4 \\ 1,3 \end{array}\right)- \frac{1}{\sqrt{161}}\cdot \left(\begin{array}{c} 12 \\ -4 \\ 1 \end{array}\right) \cdot \frac{0,2}{\sin(41\text{°})} \approx \left(\begin{array}{c} 15,3 \\ 4,1 \\ 1,3 \end{array}\right) {{/formula}} | ||
36 | |||
37 | |||
38 | Somit ergibt sich für die Koordinaten des Punktes {{formula}}S(15,3|4,1|1,3){{/formula}}. |