Änderungen von Dokument Tipp Ebenenschar
Zuletzt geändert von akukin am 2024/10/01 17:26
Von Version 9.1
bearbeitet von Holger Engels
am 2024/09/25 20:45
am 2024/09/25 20:45
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -1,34 +1,31 @@ 1 1 === Teilaufgabe 1 === 2 2 3 -{{detail summary="Hinweis 1"}} 4 -Ermittle den Wert von //a//, so dass //E// parallel zur Gerade mit der Gleichung 5 5 4 + 6 6 {{html}} 6 +<detail> 7 +<summary style="display: revert!important">Hinweis 1</summary> 8 +Ermittle den Wert von <i> a </i>, so dass <i>E</i> parallel zur Gerade mit der Gleichung 9 + 7 7 <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi>x</mi><mo>→</mo></mover><mo>=</mo><mo>(</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>)</mo><mo>+</mo><mi>b</mi><mo>·</mo><mo>(</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>)</mo><mo> </mo><mtext>und</mtext><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mspace linebreak="newline"/><mspace linebreak="newline"/></math> 8 -{{/html}} 9 9 10 10 verläuft. 11 -{{/detail}} 12 12 13 -{{detail summary="Hinweis 2"}} 14 -Falls die Ebene und die Gerade keinen gemeinsamen Punkt haben, verlaufen sie parallel. 15 -Bestimme einen Schnittpunkt und wähle den Wert von //a//, sodass kein Schnittpunkt existiert. 14 +</detail> 15 +{{/html}} 16 16 17 -Alternativ: 18 -Falls der Normalenvektor der Ebene (bestehend aus den drei Koeffizienten der Koordinatenform) senkrecht auf dem Richtungsvektor der Geraden steht, verlaufen die Ebene und die Gerade parallel. 19 -Bilde das Skalarprodukt aus den beiden obigen Vektoren und überprüfe, für welchen Wert von //a// das Skalarprodukt null ist, also die beiden Vektoren aufeinander senkrecht stehen. 20 -{{/detail}} 21 21 22 22 === Teilaufgabe 2 === 23 23 24 -{{ detail summary="Hinweis 1"}}25 - Prüfe, ob es einen Wert für //a// gibt, fürden die Ebene mitder Gleichung {{formula}}6x_1-8x_2+x_3=24{{/formula}}identisch zu //E// ist.26 - {{/detail}}20 +{{html}} 21 +<detail> 22 +<summary style="display: revert!important">Hinweis 2</summary> 27 27 28 - {{detail summary="Hinweis2"}}29 - Zwei Ebenen sindidentisch, wenn ihre Gleichungen in Koordinatenform Vielfache voneinander sind, also durch Multiplikation ineinander überführt werden können.30 -{{/ detail}}24 +Prüfe, ob es einen Wert für <i>a</i> gibt, für den die Ebene mit der Gleichung <i>6x<sub>1</sub>-8x<sub>2</sub>+x<sub>3</sub>=24</i> identisch zu <i>E</i> ist. 25 +</detail> 26 +{{/html}} 31 31 28 + 32 32 {{lehrende}} 33 33 34 34 Ermittle den Wert von {{formula}}a{{/formula}}, so dass {{formula}}E{{/formula}} parallel zur Gerade mit der Gleichung {{formula}}\vec{x}=\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)+b\cdot \left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right){{/formula}} und {{formula}}b\in\mathbb{R}{{/formula}} verläuft. ... ... @@ -35,7 +35,6 @@ 35 35 36 36 === Teilaufgabe 2 === 37 37 38 -Prüfe, ob es einen Wert für {{formula}}a{{/formula}} gibt, für den die Ebene mit der Gleichung {{formula}}6x_1-8x_2+x_3=24{{/formula}} identisch zu {{formula}}E{{/formula}} ist. 35 +Prüfen Sie, ob es einen Wert für {{formula}}a{{/formula}} gibt, für den die Ebene mit der Gleichung {{formula}}6x_1-8x_2+x_3=24{{/formula}} identisch zu {{formula}}E{{/formula}} ist. 39 39 40 -{{/lehrende}} 41 - 37 +{{lehrende}}