... |
... |
@@ -1,4 +1,4 @@ |
1 |
|
-{{aufgabe id="LGS, Lösungsvielfalt" afb="" kompetenzen="K1, K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb"}} |
|
1 |
+{{aufgabe id="LGS, Lösungsvielfalt" afb="" kompetenzen="K1, K2, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb" cc="by"}} |
2 |
2 |
Gegeben ist das Gleichungssystem |
3 |
3 |
{{formula}}\begin{matrix}\mathrm{I}&2x&\ &\ &+&z\ &=&0\\\mathrm{II}&\ &\ &-y&+&2z&=&0\\\mathrm{III}&\ &\ &2y&+&bz&=&1\\\end{matrix}{{/formula}} |
4 |
4 |
mit {{formula}}x,y,z\in\mathbb{R}{{/formula}}. Untersuche in Abhängigkeit von {{formula}}b{{/formula}} mit {{formula}}b\in\mathbb{R}{{/formula}} die Anzahl der Lösungen des Gleichungssystems; gib gegebenenfalls die Lösungen an. |