Änderungen von Dokument BPE 11.2 Laplace-Experiment, mehrstufige Experimente und Urnenmodelle
Zuletzt geändert von Martina Wagner am 2025/10/20 13:30
Von Version 37.1
bearbeitet von Martina Wagner
am 2025/10/06 09:16
am 2025/10/06 09:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 39.1
bearbeitet von Martina Wagner
am 2025/10/06 09:43
am 2025/10/06 09:43
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -6,7 +6,7 @@ 6 6 == Aufgaben zu Laplace-Experimenten == 7 7 8 8 {{aufgabe id="Laplace-Experimente" afb="I" kompetenzen="K1, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="5"}} 9 - 9 + 10 10 Beurteile, ob es sich bei folgenden Beispielen um Laplace-Experimente handelt: 11 11 (%class=abc%) 12 12 1. Wurf eines Flaschendeckels ... ... @@ -21,37 +21,34 @@ 21 21 22 22 {{aufgabe id="Quiz" afb="I" kompetenzen="K1, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}} 23 23 24 +Gib jeweils die richtige Antwort an. 25 + 24 24 (%class=abc%) 25 -1. Beschreibe, was manunter einemLaplace-Experimentversteht.27 +1. Ein Laplace-Experiment ist 26 26 (% style="list-style-type: disc %) 27 -11. Ein Experiment mit ungleichen Wahrscheinlichkeiten28 -11. Ein Experiment, bei dem alle möglichen Ergebnisse gleich wahrscheinlich sind29 -11. Ein Experiment, das nur einmal durchgeführt wird29 +11. ein Experiment mit ungleichen Wahrscheinlichkeiten 30 +11. ein Experiment, bei dem alle möglichen Ergebnisse gleich wahrscheinlich sind 31 +11. ein Experiment, das nur einmal durchgeführt wird 30 30 31 -1. Gib an, wievielemöglicheErgebnisse es bei einem Wurf mit einem fairen Würfel gibt33 +1. Bei einem Wurf mit einem fairen Würfel gibt es 32 32 (% style="list-style-type: disc %) 33 -11. 4 34 -11. 6 35 -11. 8 35 +11. 4 mögliche Ergebnisse 36 +11. 6 mögliche Ergebnisse 37 +11. 8 mögliche Ergebnisse 36 36 37 -1. [[image:1.jpeg||width=120 style="float:right"]] Giban,welche der folgendenWahrscheinlichkeitenfürdas Ergebnis"Kopf"korrekt ist, wenn du eine faire Münze wirfst.39 +1. [[image:1.jpeg||width=120 style="float:right"]]Bei einem Wurf mit einer idealen Münze ist die Wahrscheinlichkeit für "Kopf" 38 38 (% style="list-style-type: disc %) 39 -11. {{formula}} P(Kopf) =\frac{1}{2} {{/formula}}40 -11. {{formula}} P(Kopf) =\frac{1}{3} {{/formula}}41 -11. {{formula}} P(Kopf) =\frac{1}{4} {{/formula}}41 +11. {{formula}} \frac{1}{2} {{/formula}} 42 +11. {{formula}} \frac{1}{3} {{/formula}} 43 +11. {{formula}} \frac{1}{4} {{/formula}} 42 42 43 -1. (%style="clear:right"%)Ein Beutel enthält 2 rote und 3 blaue Kugeln. ErmittledieWahrscheinlichkeit für das ZieheneinerblauenKugel.45 +1. (%style="clear:right"%)Ein Beutel enthält 2 rote und 3 blaue Kugeln. Die Wahrscheinlichkeit für die blaue Kugel ist 44 44 (% style="list-style-type: disc %) 45 -11. {{formula}} P(\text{blau}) = \frac{3}{5} {{/formula}}[[image:2a.png||width=80 style="float: right"]] 46 -11. {{formula}} P(\text{blau}) = \frac{2}{5} {{/formula}} 47 -11. {{formula}} P(\text{blau}) = \frac{2}{3} {{/formula}} 47 +11. {{formula}} \frac{3}{5} {{/formula}}[[image:2a.png||width=80 style="float: right"]] 48 +11. {{formula}} \frac{2}{5} {{/formula}} 49 +11. {{formula}} \frac{2}{3} {{/formula}} 50 + 48 48 49 -1. Bei einem Laplace-Experiment wird die Anzahl der Durchführungen erhöht. Dabei soll die Entwicklung der relativen Häufigkeit eines Ergebnisses betrachtet werden. Entscheide dich für eine der Lösungen. 50 -(% style="list-style-type: disc %) 51 -11. Sie bleibt konstant 52 -11. Sie schwankt stark 53 -11. Sie nähert sich der Wahrscheinlichkeit an 54 - 55 55 1. Du wirfst einen einen Würfel 60 Mal. Insgesamt erhältst du 10 Mal eine 4. Wie groß ist die relative Häufigkeit für das Ergebnis "4"? Entscheide und begründe. 56 56 (% style="list-style-type: disc %) 57 57 11. {{formula}} P(4) = \frac{1}{6} {{/formula}} ... ... @@ -60,9 +60,9 @@ 60 60 61 61 1. Gib die Formel zur Berechnung der Wahrscheinlichkeit eines Ereignisses in einem Laplace-Experiment an. 62 62 (% style="list-style-type: disc %) 63 -11. {{formula}} P(E) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}} {{/formula}} 64 -11. {{formula}} P(E) = \text{Anzahl der möglichen Ergebnisse} \times \text{Anzahl der günstigen Ergebnisse} {{/formula}} 65 -11. {{formula}} P(E) = \text{Anzahl der günstigen Ergebnisse} - \text{Anzahl der möglichen Ergebnisse} {{/formula}} 60 +11. {{formula}} P(\text {E}) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}} {{/formula}} 61 +11. {{formula}} P(\text {E}) = \text{Anzahl der möglichen Ergebnisse} \times \text{Anzahl der günstigen Ergebnisse} {{/formula}} 62 +11. {{formula}} P(\text {E}) = \text{Anzahl der günstigen Ergebnisse} - \text{Anzahl der möglichen Ergebnisse} {{/formula}} 66 66 67 67 1. Du ziehst eine Karte aus einem Standarddeck von 52 Karten. Berechne die Wahrscheinlichkeit, ein Herz zu ziehen. 68 68 (% style="list-style-type: disc %) ... ... @@ -76,11 +76,11 @@ 76 76 11. 3 77 77 11. 4 78 78 79 -1. In einemLaplace-Experiment mit 10 möglichenErgebnissen. Berechne,wie großistdie Wahrscheinlichkeit,einbestimmtesErgebniszu erzielen.76 +1. Ein Laplace-Experiment mit 10 möglichen gleichwahrscheinlichen Ergebnissen. Die Wahrscheinlichkeit für ein Ergebnis ist 80 80 (% style="list-style-type: disc %) 81 -11. {{formula}} P(E) =\frac{1}{5} {{/formula}}82 -11. {{formula}} P(E) =\frac{1}{10} {{/formula}}83 -11. {{formula}} P(E) =\frac{1}{2} {{/formula}}78 +11. {{formula}} \frac{1}{5} {{/formula}} 79 +11. {{formula}} \frac{1}{10} {{/formula}} 80 +11. {{formula}} \frac{1}{2} {{/formula}} 84 84 {{/aufgabe}} 85 85 86 86 == Mehrstufige Zufallsexperimente ==