Änderungen von Dokument BPE 12.1 Potenzen mit rationalem Exponenten, Normdarstellung
Zuletzt geändert von Simone Schuetze am 2025/12/18 14:43
Von Version 169.1
bearbeitet von Simone Schuetze
am 2025/12/17 14:14
am 2025/12/17 14:14
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 204.1
bearbeitet von Simone Schuetze
am 2025/12/18 14:43
am 2025/12/18 14:43
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -5,27 +5,13 @@ 5 5 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen in Normdarstellung angeben. 6 6 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen aus dem Makro- oder Mikrozahlenbereich als Zehnerpotenzen darstellen. 7 7 8 -{{aufgabe id=" Potenzen mit rationalen Exponenten:Wertetabelle mit negativen Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}}8 +{{aufgabe id="Wertetabelle mit negativen Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}} 9 9 Bestimme die fehlenden Zahlen in den Lücken und führe fort: 10 10 | {{formula}}\square{{/formula}} | {{formula}}3^2{{/formula}} | {{formula}}3^1{{/formula}} | {{formula}}3^0{{/formula}} | {{formula}}3^{-1}{{/formula}} | {{formula}}3^{-2}{{/formula}} | {{formula}}\square{{/formula}} 11 11 | 27 | 9 | 3 | {{formula}}\square{{/formula}} | {{formula}}\square{{/formula}} |{{formula}}\square{{/formula}}| {{formula}}\square{{/formula}} 12 12 {{/aufgabe}} 13 13 14 -{{aufgabe id="Potenzen mit rationalen Exponenten: Stimmt das wirklich?" afb="I" kompetenzen="K5" quelle="Team KS Offenburg" cc="BY-SA" zeit="2"}} 15 -Ein Schüler behauptet:{{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}. 16 - 17 -Arbeitsauftrag: 18 - 19 -a) Untersuche, ob diese Aussage für alle Zahlen {{formula}}x{{/formula}} gilt. 20 -Begründe deine Entscheidung mithilfe eines geeigneten Beispiels oder Gegenbeispiels. 21 - 22 -b) Erläutere, warum der Term {{formula}}0^{-1}{{/formula}} nicht definiert ist. 23 - 24 - 25 - 26 -{{/aufgabe}} 27 - 28 -{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 14 +{{aufgabe id="Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 29 29 Gib als Bruch an und berechne, wenn möglich. 30 30 (% style="list-style: alphastyle" %) 31 31 1. {{formula}}3^{-5}{{/formula}} ... ... @@ -34,7 +34,21 @@ 34 34 1. {{formula}}27^{-\frac{1}{3}} {{/formula}} 35 35 {{/aufgabe}} 36 36 37 -{{aufgabe id="Potenzen mit rationalen Exponenten: Wertetabelle fortführen" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 23 +{{aufgabe id="Vom Bruch zur negativen Potenz" afb="I" kompetenzen="K5" zeit="1" quelle="[[KMap>>https://kmap.eu]]" cc="BY-SA"}} 24 +Nenne die Potenzschreibweise von {{formula}} \frac{1}{8} {{/formula}}. 25 +{{/aufgabe}} 26 + 27 +{{aufgabe id="Aussage zu rationalen Exponenten begründen" afb="III" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}} 28 +Ein Schüler behauptet: //„{{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}.“// 29 + 30 +a) Untersuche, ob diese Aussage für alle Zahlen wahr ist. 31 +Begründe deine Entscheidung mithilfe eines geeigneten Beispiels oder Gegenbeispiels. 32 + 33 +b) Erläutere, warum der Term {{formula}}0^{-1}{{/formula}} nicht definiert ist. 34 + 35 +{{/aufgabe}} 36 + 37 +{{aufgabe id="Wertetabelle mit rationalem Exponenten fortführen" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 38 38 Führe fort .. 39 39 40 40 | {{formula}}2^4{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^{1/2}{{/formula}} | {{formula}}2^{1/4}{{/formula}} ... ... @@ -42,7 +42,7 @@ 42 42 {{/aufgabe}} 43 43 44 44 45 -{{aufgabe id=" Potenzen mit rationalen Exponenten:Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}}45 +{{aufgabe id="Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}} 46 46 Gib in Wurzelschreibweise an und berechne, wenn möglich. 47 47 (% style="list-style: alphastyle" %) 48 48 1. {{formula}}81^{\frac{1}{2}}{{/formula}} ... ... @@ -51,7 +51,7 @@ 51 51 1. {{formula}}a^{\frac{8}{3}}{{/formula}} 52 52 {{/aufgabe}} 53 53 54 -{{aufgabe id=" Potenzen mit rationalen Exponenten:Von der Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}54 +{{aufgabe id="Von der Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 55 55 Gib in Potenzschreibweise an und berechne, wenn möglich. 56 56 (% style="list-style: alphastyle" %) 57 57 1. {{formula}}\sqrt{3^5}{{/formula}} ... ... @@ -59,7 +59,7 @@ 59 59 1. {{formula}}\sqrt[a]{b^c}{{/formula}} 60 60 {{/aufgabe}} 61 61 62 -{{aufgabe id=" PotenzenmitrationalenExponenten: Lücken" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}}62 +{{aufgabe id="Lücken bei der Wurzel- und Potenzschreibweise" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}} 63 63 Ermittle die fehlenden Zahlen in den Lücken: 64 64 (% style="list-style: alphastyle" %) 65 65 1. {{formula}}a^{\frac{\square}{4}}=\sqrt[\square]{a^5}{{/formula}} ... ... @@ -68,7 +68,40 @@ 68 68 1. {{formula}}\sqrt[4]{d^{\frac{2}{3}}}= d^{\frac{\square}{6}}{{/formula}} 69 69 {{/aufgabe}} 70 70 71 -{{aufgabe id="Normdarstellung und Zehnerpotenzen: Symbole des Taschenrechners verstehen" afb="II" kompetenzen="K4, K5" zeit="4 " quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 71 +{{aufgabe id="Normdarstellungen und Namen großer Zahlen mit Zehnerpotenzen" afb="II" kompetenzen="K5" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 72 +1) Begründe, ob die Zahlen in a) und b) in Normdarstellung angegeben sind. 73 +Verbessere gegebenenfalls. 74 + 75 +a) {{formula}}123 \cdot 10^{12}{{/formula}} 76 + 77 +b) {{formula}}7,32 \cdot 10^{10}{{/formula}} 78 + 79 +2) Gib die großen Zahlen aus a) und b) ausgesprochen in Worten an. 80 + 81 +{{/aufgabe}} 82 + 83 +{{aufgabe id="Größenzuordnung bei Normdarstellung und Zehnerpotenzen" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 84 +Gegeben sind die folgenden Zahlen in der Form von Zehnerpotenzen: 85 + 86 +{{formula}}7 \cdot 10^{-5}{{/formula}}, 87 +{{formula}}1 \cdot 10^{2}{{/formula}}, 88 +{{formula}}1 \cdot 10^{-10}{{/formula}} 89 + 90 +Außerdem passen folgende Beispiele zu den gegebenen Größen: 91 +Länge eines Fußballfeldes 92 +Durchmesser eines Atoms 93 +Dicke eines menschlichen Haares 94 + 95 +a) Ordne die gegebenen Zahlen der Größe nach (von klein nach groß) und ordne sie gleichzeitig dem jeweils passenden Beispiel begründet zu. 96 + 97 +b) Erläutere, warum die Darstellung mit Zehnerpotenzen besonders geeignet ist, um sehr große und sehr kleine Größen miteinander zu vergleichen. 98 + 99 + 100 + 101 +{{/aufgabe}} 102 + 103 + 104 +{{aufgabe id="Normdarstellung des Taschenrechners" afb="II" kompetenzen="K4, K5" zeit="4" quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 72 72 (% style="list-style: alphastyle" %) 73 73 1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an. 74 74 [[image:Taschenrechnerdisplay.png||width="100"]] ... ... @@ -77,19 +77,23 @@ 77 77 [[image:Taschenrechnerdisplay_2.png||width="100"]] 78 78 {{/aufgabe}} 79 79 80 -{{aufgabe id="Normdarstellungen und Namen großer Zahlen mit Zehnerpotenzen" afb="II" kompetenzen="K5" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 81 -i) Begründe, ob die Zahlen in a) und b) in Normdarstellung angegeben sind. 82 -Verbessere gegebenenfalls. 113 +{{aufgabe id="Darstellungwechsel begründen" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}} 114 +Gegeben ist die Zahl {{formula}} 0,0004 {{/formula}} 83 83 84 -a) {{formula}}123 \cdot 10^{12}{{/formula}} 116 + 117 +1. Stelle die Zahl jeweils in den folgenden Darstellungsformen dar: 118 + a) in Prozent 119 + b) als vollständig gekürzter Bruch 120 + c) als Zahl mit negativem Exponenten der Form {{formula}}x^{-2}{{/formula}} 121 + d) als Zehnerpotenz (mind. 2 Beispiele) 122 + e) als Zahl in Normdarstellung 85 85 86 -b) {{formula}}7,32 \cdot 10^{10}{{/formula}} 87 - 88 -ii) Gib die großen Zahlen aus a) und b) als Ziffer-Wort-Kombination an. 89 - 90 -{{/aufgabe}} 124 +1. Erläutere, worin sich diese Darstellungen unterscheiden und für welche Zwecke jeweils eine Darstellung besonders geeignet ist. Gehe dabei auf mindestens zwei verschiedene Darstellungsformen ein. 91 91 92 92 93 93 94 -{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 95 95 129 +{{/aufgabe}} 130 + 131 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="5"/}} 132 +