Änderungen von Dokument BPE 12.4 Potenzgleichungen

Zuletzt geändert von Simone Schuetze am 2025/12/18 09:46

Von Version 26.2
bearbeitet von Holger Engels
am 2025/09/30 14:34
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 58.1
bearbeitet von Bastian Knöpfle
am 2025/10/01 11:38
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.bastianknoepfle
Inhalt
... ... @@ -3,8 +3,27 @@
3 3  [[Kompetenzen.K5]] Ich kann die Lösungen einfacher Potenzgleichungen bestimmen.
4 4  [[Kompetenzen.K3]] [[Kompetenzen.K5]] Ich kann die Lösungen einfacher Potenzgleichungen im Anwendungszusammenhang bestimmen.
5 5  
6 -{{aufgabe id="Potenzgleichungsmauer" afb="II" kompetenzen="K5" Zeit="8" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" }}
7 -Bestimme die Platzhalter in den Gleichungsmauern.
6 +{{aufgabe id="Einfache Gleichungen" afb="I" kompetenzen="K2, K5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" zeit="5"}}
7 +Bestimme die Lösungen der Potenzgleichung.
8 +
9 +a) {{formula}}x^2=25{{/formula}}
10 +
11 +b) {{formula}}x^5=32{{/formula}}
12 +
13 +c) {{formula}}x^3=-8{{/formula}}
14 +
15 +d) {{formula}}x^4-81=0{{/formula}}
16 +
17 +e) {{formula}}x^{-2}=\frac{1}{4}{{/formula}}
18 +
19 +f) {{formula}}x^3+\frac{1}{27}=0{{/formula}}
20 +
21 +g) {{formula}}\frac{125}{216}=x^3{{/formula}}
22 +
23 +{{/aufgabe}}
24 +
25 +{{aufgabe id="Potenzgleichungsmauer" afb="II" kompetenzen="K2, K5" zeit="8" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" }}
26 +Bestimme die Platzhalter in den Gleichungsmauern, so dass x die Lösung(en) der unten angrenzenden Potenzgleichungen ergibt.
8 8  (%class="abc"%)
9 9  1. (((
10 10  (%class="noborder slim" style="text-align: center"%)
... ... @@ -18,13 +18,18 @@
18 18  )))
19 19  {{/aufgabe}}
20 20  
21 -{{aufgabe id="Potenzgleichung" afb="II, III" kompetenzen="K5" Zeit="5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" }}
40 +{{aufgabe id="Erde als Würfel" afb="II" kompetenzen="K2, K3, K5" zeit="5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" }}
41 +Bestimme die Seitenlänge a eines Würfels, der das gleiche Volumen wie die Erde besitzt.
42 +Recherchiere dazu die relevanten Größen.
43 +{{/aufgabe}}
44 +
45 +{{aufgabe id="Potenzgleichung" afb="III" kompetenzen="K2, K5" zeit="10" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" }}
22 22  Gegeben ist die Gleichung
23 23  {{formula}}x^n=a{{/formula}}
24 24  (%class=abc%)
25 25  1. Gib Werte für //n// und //a// an, sodass die Gleichung
26 26  11. eine Lösung
27 -11. keine Lösüng
51 +11. keine Lösung
28 28  11. zwei Lösungen
29 29  
30 30  besitzt.
... ... @@ -31,11 +31,24 @@
31 31  (%class=abc start=2%)
32 32  1. Ermittle den allgemeinen Wert für a und n, sodass die Gleichung
33 33  11. eine Lösung
34 -11. keine Lösüng
58 +11. keine Lösung
35 35  11. zwei Lösungen
36 36  
37 37  besitzt.
38 38  {{/aufgabe}}
63 +
64 +{{aufgabe id="Potenzgleichungen veranschaulichen" afb="II" kompetenzen="K4" quelle="Niels Barth, Bastian Knöpfle" cc="BY-SA" zeit="10"}}
65 +Skizziere die Potenzfunktion und die dazu gehörige Lösung in einem Schaubild.
39 39  
40 -{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
67 +(% style="list-style: alphastyle" %)
68 +1. Gleichung vom Grad 4 und {{formula}}\mathbb{L} = \lbrace -4; 4 \rbrace{{/formula}}
69 +1. Gleichung vom Grad 5 und {{formula}}\mathbb{L} = \lbrace 5 \rbrace{{/formula}}
70 +{{/aufgabe}}
41 41  
72 +
73 +{{aufgabe id="Potenzgleichungen ungeraden Grades" afb="III" kompetenzen="K1, K6" zeit="5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" }}
74 +Erläutere, dass eine Potenzgleichung ungeraden Grades keine zwei Lösungen besitzen kann.
75 +{{/aufgabe}}
76 +
77 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="4"/}}
78 +