Änderungen von Dokument BPE 1.1 Rechnen mit Termen

Zuletzt geändert von Holger Engels am 2025/08/11 19:10

Von Version 22.1
bearbeitet von akukin
am 2025/07/10 19:43
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 29.1
bearbeitet von akukin
am 2025/07/11 15:10
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -208,4 +208,86 @@
208 208  |8) {{formula}}10^x : 10^x{{/formula}} | a) {{formula}}10^{2x}{{/formula}} \\ b) {{formula}}1{{/formula}} \\ c) {{formula}}10{{/formula}} |
209 209  {{/aufgabe}}
210 210  
211 +{{aufgabe id="Binome ergänzen" afb="II" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
212 +Trage jeweils ein, welche Werte für die Symbole eingesetzt werden müssen, so dass die Termumformung richtig ist.
213 +(%class="border"%)
214 +|a) {{formula}}(x + \square)(x - \square) = x^2 - 25{{/formula}} | {{formula}}\square={{/formula}}
215 +|b) {{formula}}(2x - \square)^2 = 4x^2 - \Delta + 9{{/formula}}| {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}}
216 +|c) {{formula}}(x - \square)^2 = x^2 - 4xy + \Delta{{/formula}}| {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}}
217 +|d) {{formula}}(2z - \square)^2 =\heartsuit -8z + \Delta{{/formula}} | {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}} {{formula}}\heartsuit={{/formula}}
218 +|e) {{formula}}(4x - \square)(4x + \square) = \Delta - 49y^2{{/formula}} | {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}}
219 +{{/aufgabe}}
220 +
221 +{{aufgabe id="Fehlerteufel" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
222 +Tim stellt seinem Nachhilfeschüler Kevin zwei Aufgaben.
223 +Welcher der angegebenen Terme stellt die richtige Umformung dar?
224 +Erläutere bei a), welche Fehler gemacht wurden.
225 +(%class=abc%)
226 +1. Löse die Klammer auf: {{formula}}(5ab)^3{{/formula}}
227 +11. {{formula}}5a^3b^3{{/formula}}
228 +11. {{formula}}125a^3b{{/formula}}
229 +11. {{formula}}125a^3b^3{{/formula}}
230 +11. {{formula}}15a^3b^3{{/formula}}
231 +11. {{formula}}5ab^3{{/formula}}
232 +1. Vereinfache soweit wie möglich: {{formula}}v^6:v^{n-6}{{/formula}}
233 +11. {{formula}}v^{-n}{{/formula}}
234 +11. {{formula}}v^{n+12}{{/formula}}
235 +11. {{formula}}v^{-1+n}{{/formula}}
236 +11. {{formula}}v^{12-n}{{/formula}}
237 +11. {{formula}}v^{n-12}{{/formula}}
238 +{{/aufgabe}}
239 +
240 +{{aufgabe id="Potenzen mit negativen Exponenten" afb="III" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
241 +Tim überlegt: Wenn {{formula}}2^{-1}{{/formula}} dasselbe ist wie {{formula}}\frac{1}{2}{{/formula}}, dann ist doch {{formula}}3^{-2}{{/formula}} dasselbe wie {{formula}}\frac{2}{3}{{/formula}}.
242 +Welches Muster liegt dieser Vorgehensweise zugrunde? Was wäre demnach {{formula}}10^{-2}{{/formula}}?
243 +Hat Tim Recht?
244 +
245 +{{/aufgabe}}
246 +
247 +{{aufgabe id="Rechnen mit Potenzen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
248 +Fasse zusammen:
249 +1.a) {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}}
250 +1.b) {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}}
251 +1.c) {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}}
252 +
253 +Wende die Potenzgesetze an:
254 +2.a) {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}}
255 +
256 +2.b) {{formula}}-10a^2 + 2a(a+2){{/formula}}
257 +
258 +2.c) {{formula}}y^3 \cdot (-x)^3{{/formula}}
259 +
260 +2.d) {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}}
261 +
262 +2.e) {{formula}}\frac{b^{n+2}}{b^n}{{/formula}}
263 +
264 +2.f) {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}}
265 +
266 +2.g) {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}}
267 +
268 +2.h) {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}}
269 +
270 +2.i) {{formula}}(-2y)^3{{/formula}}
271 +
272 +2.j) {{formula}}(5a^3b^2)^3{{/formula}}
273 +
274 +(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)(((
275 +**Merke:**
276 +1. Bei Addition und Subtraktion:
277 +Man darf nur Potenzen zusammenfassen, die die gleiche Basis und den gleichen Exponenten haben. Hierbei gilt immer: __Potenzrechnung vor Punktrechnung vor Strichrechnung!__
278 +1. Bei Multiplikation und Division:
279 + 1) {{formula}}a^n \cdot a^m = a^{n+m}{{/formula}}
280 + 2) {{formula}}a^n \cdot b^n = (a \cdot b)^n{{/formula}}
281 + 3) {{formula}}\frac{a^n}{a^m} = a^{n-m}{{/formula}}
282 + 4) {{formula}}\frac{a^n}{b^n} = (\frac{a}{b})^n{{/formula}}
283 + 5) {{formula}}(a^n)^m = a^{n \cdot m}{{/formula}}
284 +1. Beachte außerdem:
285 + 1) Bei ungerader Hochzahl und negativer Basis bleibt das Minuszeichen erhalten,
286 + Bsp. {{formula}}(-3)^3 = (-3) \cdot (-3) \cdot (-3) = -27{{/formula}}
287 + 2) Bei gerader Hochzahl und negativer Basis fällt das Minuszeichen weg,
288 + Bsp. {{formula}}(-3)^2 = (-3) \cdot (-3) = 9{{/formula}}
289 + 3) Unterscheide: {{formula}}-(-2)^2 = -(2)^2= -4{{/formula}}
290 + {{formula}}(-2)^2 = (-2)(-2) = 4{{/formula}})))
291 +{{/aufgabe}}
292 +
211 211  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}