Änderungen von Dokument BPE 1.1 Rechnen mit Termen
Zuletzt geändert von Holger Engels am 2025/10/04 15:00
Von Version 32.2
bearbeitet von Holger Engels
am 2025/07/14 13:26
am 2025/07/14 13:26
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 37.1
bearbeitet von Martina Wagner
am 2025/09/30 14:46
am 2025/09/30 14:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.martinawagner - Inhalt
-
... ... @@ -37,7 +37,7 @@ 37 37 Bestimme die einfachste Form der folgenden Terme: 38 38 (%class="abc"%) 39 39 1. {{formula}} 6b^3 : 3b^3 {{/formula}} 40 -1. {{formula}} \frac{x^m}{x^ \(m-3} {{/formula}}40 +1. {{formula}} \frac{x^m}{x^{m-3}} {{/formula}} 41 41 {{/aufgabe}} 42 42 43 43 == Potenzen == ... ... @@ -140,8 +140,8 @@ 140 140 Das Ergebnis einer Addition von Brüchen ist {{formula}}\frac{19}{24}{{/formula}}. Bestimme einen Rechenausdruck, wie die Summe zustande gekommen sein kann. 141 141 {{/aufgabe}} 142 142 143 -{{aufgabe id="Was gehört zusammen?" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 144 - Ordne dieSachverhaltein der linken Spalte denTermen in der rechten Spaltezu:143 +{{aufgabe id="Was gehört zusammen?" afb="I" quelle="Team Mathebrücke" kompetenzen="K4" zeit="5" cc="by-sa" tags="mathebrücke"}} 144 +Bestimme zu jedem Term in der linken Spalte den passenden Sachverhalt die Sachverhalte in der rechten Spalte. 145 145 146 146 (%class="border%) 147 147 |Zwei Strohhalme unterscheiden sich um 5cm. Der längere hat die Länge x. \\ Wenn man die Strohhalme hintereinander legt, haben sie eine Gesamtlänge von 60cm.|{{formula}}(x+5) + x = 60{{/formula}} ... ... @@ -154,7 +154,7 @@ 154 154 |Johnny hat eine Spardose. Johnny hat 5 Schwestern. In der Spardose befinden sich 60€. \\An seine Schwestern muss er jeweils einen gleichen Geldbetrag überreichen. \\Am Schluss verbleiben ihm 12€.| {{formula}}5x + 12 =60{{/formula}} 155 155 {{/aufgabe}} 156 156 157 -{{aufgabe id="Falsche Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 157 +{{aufgabe id="Falsche Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="K5" zeit="8" cc="by-sa" tags="mathebrücke"}} 158 158 Begründe jeweils anhand eines Zahlenbeispiels, dass folgende Termumformungen falsch sind. Gib, wenn es geht, die richtige Termumformung an. 159 159 (%class=abc%) 160 160 1. {{formula}}a-(b-c)=a-b-c{{/formula}} ... ... @@ -170,7 +170,7 @@ 170 170 171 171 {{/aufgabe}} 172 172 173 -{{aufgabe id="Zuordnungsaufgabe Ausklammern /Faktorisieren" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}173 +{{aufgabe id="Zuordnungsaufgabe Ausklammern,Faktorisieren" afb="I" quelle="Team Mathebrücke" kompetenzen="K4" zeit="4" cc="by-sa" tags="mathebrücke"}} 174 174 Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein. 175 175 (%class="border%) 176 176 |Term |Auswahlmöglichkeiten |Lösungsfeld ... ... @@ -181,7 +181,7 @@ 181 181 |5) {{formula}}5x^2 - 10x + 5{{/formula}} | a) {{formula}}5(x+1)^2{{/formula}} \\ b) {{formula}}5(x-1)^2{{/formula}} \\ c) {{formula}}5(x-1)(x+1){{/formula}} | 182 182 {{/aufgabe}} 183 183 184 -{{aufgabe id="Zuordnungsaufgabe Binome" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 184 +{{aufgabe id="Zuordnungsaufgabe Binome" afb="I" quelle="Team Mathebrücke" kompetenzen="K4" zeit="5" cc="by-sa" tags="mathebrücke"}} 185 185 Die Terme in den Aufgaben können jeweils in eine der Auswahlmöglichkeiten umgeformt werden. Entscheide, welche Auswahlmöglichkeit die richtige ist, und trage dann a), b) bzw. c) in das Lösungsfeld ein. 186 186 (%class="border"%) 187 187 |Term |Auswahlmöglichkeiten |Lösungsfeld ... ... @@ -208,7 +208,7 @@ 208 208 |8) {{formula}}10^x : 10^x{{/formula}} | a) {{formula}}10^{2x}{{/formula}} \\ b) {{formula}}1{{/formula}} \\ c) {{formula}}10{{/formula}} | 209 209 {{/aufgabe}} 210 210 211 -{{aufgabe id="Binome ergänzen" afb="II" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 211 +{{aufgabe id="Binome ergänzen" afb="II" quelle="Team Mathebrücke" kompetenzen="K5" zeit="5" cc="by-sa" tags="mathebrücke"}} 212 212 Trage jeweils ein, welche Werte für die Symbole eingesetzt werden müssen, so dass die Termumformung richtig ist. 213 213 (%class="border"%) 214 214 |a) {{formula}}(x + \square)(x - \square) = x^2 - 25{{/formula}} | {{formula}}\square={{/formula}} ... ... @@ -218,18 +218,20 @@ 218 218 |e) {{formula}}(4x - \square)(4x + \square) = \Delta - 49y^2{{/formula}} | {{formula}}\square={{/formula}} {{formula}}\Delta={{/formula}} 219 219 {{/aufgabe}} 220 220 221 -{{aufgabe id="Fehlerteufel" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 221 +{{aufgabe id="Fehlerteufel" afb="I" quelle="Team Mathebrücke" kompetenzen="K5, K6" zeit="5" cc="by-sa" tags="mathebrücke"}} 222 222 Tim stellt seinem Nachhilfeschüler Kevin zwei Aufgaben. 223 223 Welcher der angegebenen Terme stellt die richtige Umformung dar? 224 224 Erläutere bei a), welche Fehler gemacht wurden. 225 -(%class=abc%) 226 -1. Löse die Klammer auf: {{formula}}(5ab)^3{{/formula}} 225 +(%class=abc style="line-height: 1.8em"%) 226 +1. Löse die Klammer auf: 227 +11. {{formula}}(5ab)^3{{/formula}} 227 227 11. {{formula}}5a^3b^3{{/formula}} 228 228 11. {{formula}}125a^3b{{/formula}} 229 229 11. {{formula}}125a^3b^3{{/formula}} 230 230 11. {{formula}}15a^3b^3{{/formula}} 231 231 11. {{formula}}5ab^3{{/formula}} 232 -1. Vereinfache soweit wie möglich: {{formula}}v^6:v^{n-6}{{/formula}} 233 +1. Vereinfache soweit wie möglich: 234 +11. {{formula}}v^6:v^{n-6}{{/formula}} 233 233 11. {{formula}}v^{-n}{{/formula}} 234 234 11. {{formula}}v^{n+12}{{/formula}} 235 235 11. {{formula}}v^{-1+n}{{/formula}} ... ... @@ -240,54 +240,26 @@ 240 240 {{aufgabe id="Potenzen mit negativen Exponenten" afb="III" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 241 241 Tim überlegt: Wenn {{formula}}2^{-1}{{/formula}} dasselbe ist wie {{formula}}\frac{1}{2}{{/formula}}, dann ist doch {{formula}}3^{-2}{{/formula}} dasselbe wie {{formula}}\frac{2}{3}{{/formula}}. 242 242 Welches Muster liegt dieser Vorgehensweise zugrunde? Was wäre demnach {{formula}}10^{-2}{{/formula}}? 243 -Hat Tim Recht? 244 - 245 +Begründe, ob Tim Recht hat. 245 245 {{/aufgabe}} 246 246 247 -{{aufgabe id="Rechnen mit Potenzen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 248 -Fasse zusammen: 249 -1.a) {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}} 250 -1.b) {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}} 251 -1.c) {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}} 252 - 253 -Wende die Potenzgesetze an: 254 -2.a) {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}} 255 - 256 -2.b) {{formula}}-10a^2 + 2a(a+2){{/formula}} 257 - 258 -2.c) {{formula}}y^3 \cdot (-x)^3{{/formula}} 259 - 260 -2.d) {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}} 261 - 262 -2.e) {{formula}}\frac{b^{n+2}}{b^n}{{/formula}} 263 - 264 -2.f) {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}} 265 - 266 -2.g) {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}} 267 - 268 -2.h) {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}} 269 - 270 -2.i) {{formula}}(-2y)^3{{/formula}} 271 - 272 -2.j) {{formula}}(5a^3b^2)^3{{/formula}} 273 - 274 -(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)((( 275 -**Merke:** 276 -1. Bei Addition und Subtraktion: 277 -Man darf nur Potenzen zusammenfassen, die die gleiche Basis und den gleichen Exponenten haben. Hierbei gilt immer: __Potenzrechnung vor Punktrechnung vor Strichrechnung!__ 278 -1. Bei Multiplikation und Division: 279 - 1) {{formula}}a^n \cdot a^m = a^{n+m}{{/formula}} 280 - 2) {{formula}}a^n \cdot b^n = (a \cdot b)^n{{/formula}} 281 - 3) {{formula}}\frac{a^n}{a^m} = a^{n-m}{{/formula}} 282 - 4) {{formula}}\frac{a^n}{b^n} = (\frac{a}{b})^n{{/formula}} 283 - 5) {{formula}}(a^n)^m = a^{n \cdot m}{{/formula}} 284 -1. Beachte außerdem: 285 - 1) Bei ungerader Hochzahl und negativer Basis bleibt das Minuszeichen erhalten, 286 - Bsp. {{formula}}(-3)^3 = (-3) \cdot (-3) \cdot (-3) = -27{{/formula}} 287 - 2) Bei gerader Hochzahl und negativer Basis fällt das Minuszeichen weg, 288 - Bsp. {{formula}}(-3)^2 = (-3) \cdot (-3) = 9{{/formula}} 289 - 3) Unterscheide: {{formula}}-(-2)^2 = -(2)^2= -4{{/formula}} 290 - {{formula}}(-2)^2 = (-2)(-2) = 4{{/formula}}))) 248 +{{aufgabe id="Rechnen mit Potenzen" afb="I" quelle="Team Mathebrücke" kompetenzen="K5" zeit="8" cc="by-sa" tags="mathebrücke"}} 249 +(%class=abc%) 250 +1. Fasse zusammen: 251 +11. {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}} 252 +11. {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}} 253 +11. {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}} 254 +1. Wende die Potenzgesetze an: 255 +11. {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}} 256 +11. {{formula}}-10a^2 + 2a(a+2){{/formula}} 257 +11. {{formula}}y^3 \cdot (-x)^3{{/formula}} 258 +11. {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}} 259 +11. {{formula}}\frac{b^{n+2}}{b^n}{{/formula}} 260 +11. {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}} 261 +11. {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}} 262 +11. {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}} 263 +11. {{formula}}(-2y)^3{{/formula}} 264 +11. {{formula}}(5a^3b^2)^3{{/formula}} 291 291 {{/aufgabe}} 292 292 293 293 {{aufgabe id="Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} ... ... @@ -311,32 +311,12 @@ 311 311 5.a) {{formula}}12ax^2 - 8ax{{/formula}} 312 312 5.b) {{formula}}3x^2 - 12{{/formula}} 313 313 5.c) {{formula}}\frac{3ax^2 - 3a}{9x + 9}{{/formula}} 314 - 315 -(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)((( 316 -**Merke:** 317 -1) **Vorzeichenregeln** 318 - Plus mal Plus ist Plus. 319 - Minus mal Plus ist Minus. 320 - Plus mal Minus ist Minus. 321 - Minus mal Minus ist Plus. 322 -2) **Rechnen mit Klammern** 323 -Geschickt ist es, zuerst die innere Klammer und dann die äußere aufzulösen. 324 -3) **Multiplikation von Klammern** 325 - {{formula}}(a+b)(m+n) = am+an+bm+bn{{/formula}} 326 -4) **Binomische Formeln** 327 - {{formula}}(a + b)^2 = a^2 + 2ab + b^2{{/formula}} 328 - {{formula}}(a - b)^2 = a^2 - 2ab + b^2{{/formula}} 329 - {{formula}}(a + b)(a - b) = a^2 - b^2{{/formula}} 330 -5) **Ausklammern** 331 -Klammere gemeinsame Faktoren aus und wende wenn möglich die binomischen Formeln an. 332 -))) 333 - 334 334 {{/aufgabe}} 335 335 336 336 {{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 337 337 Wähle die richtige{{{(n)}}} Aussage{{{(n)}}} aus und begründe deine Entscheidung. 338 338 339 -Dividiere 30 durch {{formula}}\frac{1}{2}{{/formula}} und addiere zum Ergebnis 15. Waserhältstdu?293 +Dividiere 30 durch {{formula}}\frac{1}{2}{{/formula}} und addiere zum Ergebnis 15. Gib das richtige Ergebni an. Begründe deine Entscheidung. 340 340 341 341 ☐ 30, weil {{formula}}15 + 15 = 30{{/formula}} 342 342 ☐ 75, weil {{formula}}15 + 60 = 75{{/formula}}