Änderungen von Dokument BPE 1.1 Rechnen mit Termen
Zuletzt geändert von Holger Engels am 2025/08/11 19:10
Von Version 33.2
bearbeitet von Holger Engels
am 2025/08/10 15:24
am 2025/08/10 15:24
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 35.1
bearbeitet von Holger Engels
am 2025/08/11 19:10
am 2025/08/11 19:10
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -222,14 +222,16 @@ 222 222 Tim stellt seinem Nachhilfeschüler Kevin zwei Aufgaben. 223 223 Welcher der angegebenen Terme stellt die richtige Umformung dar? 224 224 Erläutere bei a), welche Fehler gemacht wurden. 225 -(%class=abc%) 226 -1. Löse die Klammer auf: {{formula}}(5ab)^3{{/formula}} 225 +(%class=abc style="line-height: 1.8em"%) 226 +1. Löse die Klammer auf: 227 +11. {{formula}}(5ab)^3{{/formula}} 227 227 11. {{formula}}5a^3b^3{{/formula}} 228 228 11. {{formula}}125a^3b{{/formula}} 229 229 11. {{formula}}125a^3b^3{{/formula}} 230 230 11. {{formula}}15a^3b^3{{/formula}} 231 231 11. {{formula}}5ab^3{{/formula}} 232 -1. Vereinfache soweit wie möglich: {{formula}}v^6:v^{n-6}{{/formula}} 233 +1. Vereinfache soweit wie möglich: 234 +11. {{formula}}v^6:v^{n-6}{{/formula}} 233 233 11. {{formula}}v^{-n}{{/formula}} 234 234 11. {{formula}}v^{n+12}{{/formula}} 235 235 11. {{formula}}v^{-1+n}{{/formula}} ... ... @@ -241,53 +241,25 @@ 241 241 Tim überlegt: Wenn {{formula}}2^{-1}{{/formula}} dasselbe ist wie {{formula}}\frac{1}{2}{{/formula}}, dann ist doch {{formula}}3^{-2}{{/formula}} dasselbe wie {{formula}}\frac{2}{3}{{/formula}}. 242 242 Welches Muster liegt dieser Vorgehensweise zugrunde? Was wäre demnach {{formula}}10^{-2}{{/formula}}? 243 243 Hat Tim Recht? 244 - 245 245 {{/aufgabe}} 246 246 247 247 {{aufgabe id="Rechnen mit Potenzen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} 248 -Fasse zusammen: 249 -1.a) {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}} 250 -1.b) {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}} 251 -1.c) {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}} 252 - 253 -Wende die Potenzgesetze an: 254 -2.a) {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}} 255 - 256 -2.b) {{formula}}-10a^2 + 2a(a+2){{/formula}} 257 - 258 -2.c) {{formula}}y^3 \cdot (-x)^3{{/formula}} 259 - 260 -2.d) {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}} 261 - 262 -2.e) {{formula}}\frac{b^{n+2}}{b^n}{{/formula}} 263 - 264 -2.f) {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}} 265 - 266 -2.g) {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}} 267 - 268 -2.h) {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}} 269 - 270 -2.i) {{formula}}(-2y)^3{{/formula}} 271 - 272 -2.j) {{formula}}(5a^3b^2)^3{{/formula}} 273 - 274 -(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)((( 275 -**Merke:** 276 -1. Bei Addition und Subtraktion: 277 -Man darf nur Potenzen zusammenfassen, die die gleiche Basis und den gleichen Exponenten haben. Hierbei gilt immer: __Potenzrechnung vor Punktrechnung vor Strichrechnung!__ 278 -1. Bei Multiplikation und Division: 279 - 1) {{formula}}a^n \cdot a^m = a^{n+m}{{/formula}} 280 - 2) {{formula}}a^n \cdot b^n = (a \cdot b)^n{{/formula}} 281 - 3) {{formula}}\frac{a^n}{a^m} = a^{n-m}{{/formula}} 282 - 4) {{formula}}\frac{a^n}{b^n} = (\frac{a}{b})^n{{/formula}} 283 - 5) {{formula}}(a^n)^m = a^{n \cdot m}{{/formula}} 284 -1. Beachte außerdem: 285 - 1) Bei ungerader Hochzahl und negativer Basis bleibt das Minuszeichen erhalten, 286 - Bsp. {{formula}}(-3)^3 = (-3) \cdot (-3) \cdot (-3) = -27{{/formula}} 287 - 2) Bei gerader Hochzahl und negativer Basis fällt das Minuszeichen weg, 288 - Bsp. {{formula}}(-3)^2 = (-3) \cdot (-3) = 9{{/formula}} 289 - 3) Unterscheide: {{formula}}-(-2)^2 = -(2)^2= -4{{/formula}} 290 - {{formula}}(-2)^2 = (-2)(-2) = 4{{/formula}}))) 249 +(%class=abc%) 250 +1. Fasse zusammen: 251 +11. {{formula}}3a^2 + 5b^3 - 2a^2 + c^2 + 2b^3{{/formula}} 252 +11. {{formula}}2xy^2 + 8x^2 + y^2x - 2x^2 + xy^2 + 2y^2x{{/formula}} 253 +11. {{formula}}2(4x)^2 + 2 - 6x^2 - (3x)^2 - 6x - 1{{/formula}} 254 +1. Wende die Potenzgesetze an: 255 +11. {{formula}}a^2 \cdot a^4 + b \cdot b^5{{/formula}} 256 +11. {{formula}}-10a^2 + 2a(a+2){{/formula}} 257 +11. {{formula}}y^3 \cdot (-x)^3{{/formula}} 258 +11. {{formula}}\left(\frac{x}{3}\right)^4 \cdot 3^4{{/formula}} 259 +11. {{formula}}\frac{b^{n+2}}{b^n}{{/formula}} 260 +11. {{formula}}\frac{(2x)^5}{(2x)^{a+5}}{{/formula}} 261 +11. {{formula}}\frac{2^3}{\left(\frac{1}{2}\right)^3}{{/formula}} 262 +11. {{formula}}\frac{(-2x)^4}{(-y)^4}{{/formula}} 263 +11. {{formula}}(-2y)^3{{/formula}} 264 +11. {{formula}}(5a^3b^2)^3{{/formula}} 291 291 {{/aufgabe}} 292 292 293 293 {{aufgabe id="Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} ... ... @@ -311,26 +311,6 @@ 311 311 5.a) {{formula}}12ax^2 - 8ax{{/formula}} 312 312 5.b) {{formula}}3x^2 - 12{{/formula}} 313 313 5.c) {{formula}}\frac{3ax^2 - 3a}{9x + 9}{{/formula}} 314 - 315 -(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)((( 316 -**Merke:** 317 -1) **Vorzeichenregeln** 318 - Plus mal Plus ist Plus. 319 - Minus mal Plus ist Minus. 320 - Plus mal Minus ist Minus. 321 - Minus mal Minus ist Plus. 322 -2) **Rechnen mit Klammern** 323 -Geschickt ist es, zuerst die innere Klammer und dann die äußere aufzulösen. 324 -3) **Multiplikation von Klammern** 325 - {{formula}}(a+b)(m+n) = am+an+bm+bn{{/formula}} 326 -4) **Binomische Formeln** 327 - {{formula}}(a + b)^2 = a^2 + 2ab + b^2{{/formula}} 328 - {{formula}}(a - b)^2 = a^2 - 2ab + b^2{{/formula}} 329 - {{formula}}(a + b)(a - b) = a^2 - b^2{{/formula}} 330 -5) **Ausklammern** 331 -Klammere gemeinsame Faktoren aus und wende wenn möglich die binomischen Formeln an. 332 -))) 333 - 334 334 {{/aufgabe}} 335 335 336 336 {{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}