Änderungen von Dokument BPE 1.1 Rechnen mit Termen
Zuletzt geändert von Holger Engels am 2025/08/11 19:10
Von Version 34.1
bearbeitet von Holger Engels
am 2025/08/11 19:02
am 2025/08/11 19:02
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -37,7 +37,7 @@ 37 37 Bestimme die einfachste Form der folgenden Terme: 38 38 (%class="abc"%) 39 39 1. {{formula}} 6b^3 : 3b^3 {{/formula}} 40 -1. {{formula}} \frac{x^m}{x^ {m-3}}{{/formula}}40 +1. {{formula}} \frac{x^m}{x^\(m-3} {{/formula}} 41 41 {{/aufgabe}} 42 42 43 43 == Potenzen == ... ... @@ -271,6 +271,23 @@ 271 271 272 272 2.j) {{formula}}(5a^3b^2)^3{{/formula}} 273 273 274 +(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)((( 275 +**Merke:** 276 +1. Bei Addition und Subtraktion: 277 +Man darf nur Potenzen zusammenfassen, die die gleiche Basis und den gleichen Exponenten haben. Hierbei gilt immer: __Potenzrechnung vor Punktrechnung vor Strichrechnung!__ 278 +1. Bei Multiplikation und Division: 279 + 1) {{formula}}a^n \cdot a^m = a^{n+m}{{/formula}} 280 + 2) {{formula}}a^n \cdot b^n = (a \cdot b)^n{{/formula}} 281 + 3) {{formula}}\frac{a^n}{a^m} = a^{n-m}{{/formula}} 282 + 4) {{formula}}\frac{a^n}{b^n} = (\frac{a}{b})^n{{/formula}} 283 + 5) {{formula}}(a^n)^m = a^{n \cdot m}{{/formula}} 284 +1. Beachte außerdem: 285 + 1) Bei ungerader Hochzahl und negativer Basis bleibt das Minuszeichen erhalten, 286 + Bsp. {{formula}}(-3)^3 = (-3) \cdot (-3) \cdot (-3) = -27{{/formula}} 287 + 2) Bei gerader Hochzahl und negativer Basis fällt das Minuszeichen weg, 288 + Bsp. {{formula}}(-3)^2 = (-3) \cdot (-3) = 9{{/formula}} 289 + 3) Unterscheide: {{formula}}-(-2)^2 = -(2)^2= -4{{/formula}} 290 + {{formula}}(-2)^2 = (-2)(-2) = 4{{/formula}}))) 274 274 {{/aufgabe}} 275 275 276 276 {{aufgabe id="Termumformungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}} ... ... @@ -294,6 +294,26 @@ 294 294 5.a) {{formula}}12ax^2 - 8ax{{/formula}} 295 295 5.b) {{formula}}3x^2 - 12{{/formula}} 296 296 5.c) {{formula}}\frac{3ax^2 - 3a}{9x + 9}{{/formula}} 314 + 315 +(% class="box" style="border: 2px solid black; background: white; padding: 10px; margin: 10px 0;" %)((( 316 +**Merke:** 317 +1) **Vorzeichenregeln** 318 + Plus mal Plus ist Plus. 319 + Minus mal Plus ist Minus. 320 + Plus mal Minus ist Minus. 321 + Minus mal Minus ist Plus. 322 +2) **Rechnen mit Klammern** 323 +Geschickt ist es, zuerst die innere Klammer und dann die äußere aufzulösen. 324 +3) **Multiplikation von Klammern** 325 + {{formula}}(a+b)(m+n) = am+an+bm+bn{{/formula}} 326 +4) **Binomische Formeln** 327 + {{formula}}(a + b)^2 = a^2 + 2ab + b^2{{/formula}} 328 + {{formula}}(a - b)^2 = a^2 - 2ab + b^2{{/formula}} 329 + {{formula}}(a + b)(a - b) = a^2 - b^2{{/formula}} 330 +5) **Ausklammern** 331 +Klammere gemeinsame Faktoren aus und wende wenn möglich die binomischen Formeln an. 332 +))) 333 + 297 297 {{/aufgabe}} 298 298 299 299 {{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}