Änderungen von Dokument BPE 2.1 Äquivalenzumformungen

Zuletzt geändert von Martina Wagner am 2025/11/27 09:27

Von Version 49.1
bearbeitet von Stephanie Wietzorek
am 2025/11/18 09:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 65.1
bearbeitet von Martina Wagner
am 2025/11/25 14:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.wies
1 +XWiki.martinawagner
Inhalt
... ... @@ -3,8 +3,6 @@
3 3  [[Kompetenzen.K5]] Ich kann mithilfe von Äquivalenzumformungen die Lösung von linearen Gleichungen und Bruchgleichungen, die auf lineare Gleichungen zurückzuführen sind, berechnen.
4 4  [[Kompetenzen.K5]] Ich kann die Äquivalenzumformungen für das Umstellen von Formeln und linearen Ungleichungen anwenden.
5 5  
6 -== Äquivalenzumformungen ==
7 -
8 8  {{aufgabe id="Äquivalenzumformungen" afb="I" kompetenzen="K5" Zeit="2" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Gleichungen/Allgemeines]]" cc="BY-SA"}}
9 9  Gib an, was korrekte Äquivalenzumformungen sind!
10 10  
... ... @@ -20,7 +20,7 @@
20 20  {{/aufgabe}}
21 21  
22 22  {{aufgabe id="Aussagen" afb="I" kompetenzen="K1, K5, K6" Zeit="5" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Gleichungen/Allgemeines]]" cc="BY-SA"}}
23 -Begründe, ob die folgenden Aussagen wahr oder falsch sind.
21 +Gib, ob die folgenden Aussagen wahr oder falsch sind. Begründe deine Entscheidung.
24 24  (%class="abc"%)
25 25  1. Jede Gleichung hat eine Lösung
26 26  1. Die Lösungsmenge enthält all jene Elemente, die zu einer wahren Aussage führen
... ... @@ -28,8 +28,6 @@
28 28  1. Aus {{formula}}x=0{{/formula}} folgt {{formula}}L= \{\} {{/formula}}
29 29  {{/aufgabe}}
30 30  
31 -== Lösen von Gleichungen ==
32 -
33 33  {{aufgabe id="Prüfen der Lösung" afb="I" kompetenzen="K5" zeit="2" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Gleichungen/Allgemeines]]" cc="BY-SA"}}
34 34  Prüfe, ob {{formula}}x=0{{/formula}} oder {{formula}}x=1{{/formula}} eine Lösung der Gleichung ist!
35 35  
... ... @@ -36,8 +36,7 @@
36 36  {{formula}} 3(4x+4)=4(3-4x) {{/formula}}
37 37  {{/aufgabe}}
38 38  
39 -
40 -{{aufgabe id="Lösen von linearen Gleichungen" afb="I" quelle="Team Mathebrücke" kompetenzen="" zeit="" cc="by-sa" tags="mathebrücke"}}
35 +{{aufgabe id="Lösen von linearen Gleichungen" afb="I" quelle="Team Mathebrücke" kompetenzen="K5" zeit="17" cc="by-sa" tags="mathebrücke"}}
41 41  Bestimme die Lösungsmenge der folgenden Gleichungen.
42 42  
43 43  (% style="width: 100%; white-space: nowrap" class="border" %)
... ... @@ -53,17 +53,15 @@
53 53  | 9) {{formula}}3 + \frac{1}{2}b + \frac{1}{3}b - 2b = 4 + \frac{1}{6}b{{/formula}} | L =
54 54  {{/aufgabe}}
55 55  
56 -{{aufgabe id="Lösungsvielfalt" afb="III" quelle="Simone Kanzler, Stephanie Wietzorek" kompetenzen="K1, K2, K4, K5, K6" zeit="6" cc="by-sa"}}
57 -
51 +{{aufgabe id="Lösungsvielfalt" afb="III" quelle="Simone Kanzler, Stephanie Wietzorek" kompetenzen="K1, K2, K5, K6" zeit="6" cc="by-sa"}}
58 58  Es ist folgende Gleichung gegeben:
59 59  
60 60  {{formula}} x \cdot (2x - 🖤)=2x^2 + 3x {{/formula}}
61 61  
62 62  Für 🖤 darf eine beliebige reelle Zahl eingesetzt werden. Begründe, dass die Gleichung immer lösbar ist und gehe auf die Anzahl an Lösungen ein.
63 -
64 64  {{/aufgabe}}
65 65  
66 -{{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K6" zeit="" cc="by-sa" tags="mathebrücke"}}
59 +{{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K6" zeit="2" cc="by-sa" tags="mathebrücke"}}
67 67  
68 68  Gib an, welche der folgenden Aussagen wahr sind. Begründe deine Entscheidung.
69 69  {{formula}}\frac{x}{y} = \frac{1}{4}{{/formula}}. Welche der folgenden Aussagen sind wahr?
... ... @@ -74,8 +74,6 @@
74 74  ☐ {{formula}}y{{/formula}} darf auf keinen Fall den Wert Null annehmen.
75 75  {{/aufgabe}}
76 76  
77 -== Bruchgleichungen ==
78 -
79 79  {{aufgabe id="Definitionsmenge" afb="I" kompetenzen="K2, K5" zeit="3" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
80 80  Gib die Defintionsmenge der Brüche an.
81 81  (% style="width: 100%; white-space: nowrap" class="border" %)
... ... @@ -98,28 +98,26 @@
98 98  1. {{formula}}\frac{1}{b-7}; \frac{1}{7-b} {{/formula}}
99 99  {{/aufgabe}}
100 100  
101 -{{aufgabe id="Überprüfen der Lösung" afb="III" kompetenzen="K1, K2, K6" zeit="7" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
92 +{{aufgabe id="Überprüfen der Lösung" afb="II" kompetenzen="K1, K2, K6" zeit="7" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
102 102   (%class="123"%)
103 103  Überprüfe, ob der angegebene Wert für x eine Lösung der Gleichung ist!
104 104  
105 105  1. {{formula}}\frac{1}{5x+2}=1 \quad , x=-\frac{1}{5} {{/formula}}
106 106  1. {{formula}}\frac{x+1}{2x-5}=3 \quad , x=\frac{5}{2} {{/formula}}
107 -
108 -
109 109  {{/aufgabe}}
110 110  
111 -{{aufgabe id="Rechenschritte" afb="III" kompetenzen="K1, K2, K6" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
112 -Azra zeigt im Unterricht ihre Hausaufgabe. Daraufhin meldet sich Alex und meint, er hätte die Definitionsmenge anders dargestellt und auch eine andere Lösungsmenge herausbekommen. Nimm dazu Stellung:
113 -
100 +{{aufgabe id="Rechenschritte" afb="II" kompetenzen="K1, K2, K6" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
101 +Azra zeigt im Unterricht ihre Hausaufgabe. Daraufhin meldet sich Alex und meint, er hätte die Gleichung anders dargestellt und auch eine andere Definitionsmenge herausbekommen. Begründe, ob Alex recht hat. Bestimme die Lösungsmenge der Gleichung.
102 +
103 +Azra
114 114  {{formula}}\frac{1}{4x-3}=3 {{/formula}}
115 -{{formula}} D = \{\frac{3}{4}\}{{/formula}}
116 -{{formula}} 1 = 12x - 9 {{/formula}}
117 -{{formula}}12x = 10 {{/formula}}
118 -{{formula}}x = \frac{12}{10}{{/formula}}
119 -{{formula}} L = \{\frac{12}{10}\} {{/formula}}
105 +{{formula}} D = \{\frac{3}{4}\}{{/formula}}
106 +Alex
107 +{{formula}} 1 = 12x - 9 {{/formula}}
108 +{{formula}} D = \mathbb{R}{{/formula}}
120 120  {{/aufgabe}}
121 121  
122 -{{aufgabe id="Bruchgleichungen" afb="I, II" kompetenzen="K2, K4, K5" zeit="12" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
111 +{{aufgabe id="Bruchgleichungen" afb="I, II" kompetenzen="K5" zeit="12" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
123 123  Löse unter Angabe der Definitionsmenge folgende Gleichungen:
124 124   (%class="123"%)
125 125  1. {{formula}}\frac{10}{x}=5 {{/formula}}
... ... @@ -140,17 +140,16 @@
140 140  
141 141  {{/aufgabe}}
142 142  
143 -== Formeln ==
144 -
145 -{{aufgabe id="Zinsen" afb="I" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
132 +{{aufgabe id="Zinsen" afb="I" kompetenzen="K2, K5" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
146 146  Um die Jahreszinsen {{formula}} Z {{/formula}} (in €) zu berechnen, gilt folgende Formel:
147 147  {{formula}} Z = \frac{K \cdot p}{100} {{/formula}}
148 148  {{formula}} K {{/formula}}: eingesetztes Kapital in €
149 149  {{formula}} \frac{p}{100}{{/formula}}: Zinssatz
150 150  (%class="abc"%)
151 -Forme die Formel nach {{formula}}p{{/formula}} und {{formula}}K{{/formula}} um.
152 -
138 +1. Forme die Formel nach {{formula}}p{{/formula}} und {{formula}}K{{/formula}} um.
139 +1. Wie müsste man die Formel abändern, wenn die Zinsen nicht jährlich sondern monatlich berechnet werden? Gib hierzu eine Formel an.
153 153  {{/aufgabe}}
141 +
154 154  {{aufgabe id="Geschwindigkeit" afb="I" kompetenzen="K2, K5" zeit="3" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
155 155  Die Geschwindigkeit {{formula}} V {{/formula}} kann mit der Formel {{formula}} V = \frac{s}{t} {{/formula}} berechnet werden, wobei {{formula}} s {{/formula}} die zurückgelegte Strecke und {{formula}} t {{/formula}} die vergangene Zeit ist.
156 156  Forme die Formel nach {{formula}} s {{/formula}} und {{formula}} t {{/formula}} um.
... ... @@ -164,10 +164,9 @@
164 164   1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Stelle diese Formel für {{formula}} A {{/formula}} auf.
165 165   1. Überprüfe, ob man die Höhe h mit der Formel {{formula}} 2 \cdot \frac{A}{a+c} {{/formula}} berechnen kann.
166 166   1. Forme die Formel für den Flächeninhalt des Trapezes mit Hilfe von Äquivalenzumformungen nach der längeren Seite um.
167 -
168 168  {{/aufgabe}}
169 169  
170 -{{aufgabe id="Bremsweg" afb="III" kompetenzen="K1, K2, K3 K4, K5" zeit="18" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
157 +{{aufgabe id="Bremsweg" afb="III" kompetenzen="K1, K2, K3, K4, K5" zeit="18" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
171 171  Der Bremsweg {{formula}} s {{/formula}} in Metern ist die Strecke, die ein Fahrzeug nach dem Betätigen der Bremse noch zurücklegt, bis es vollständig zum Stehen kommt.
172 172  In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{V}{10}\cdot \frac{V}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt.
173 173  In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{V^2}{2a} {{/formula}} berechnen, wobei {{formula}} V {{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}.
... ... @@ -177,7 +177,5 @@
177 177  1. Erläutere, warum sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet.
178 178  {{/aufgabe}}
179 179  
180 -
181 -
182 182  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
183 183