Änderungen von Dokument BPE 2.1 Äquivalenzumformungen

Zuletzt geändert von Martina Wagner am 2025/11/27 09:27

Von Version 61.1
bearbeitet von Martina Wagner
am 2025/11/25 13:59
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 65.1
bearbeitet von Martina Wagner
am 2025/11/25 14:28
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,8 +3,6 @@
3 3  [[Kompetenzen.K5]] Ich kann mithilfe von Äquivalenzumformungen die Lösung von linearen Gleichungen und Bruchgleichungen, die auf lineare Gleichungen zurückzuführen sind, berechnen.
4 4  [[Kompetenzen.K5]] Ich kann die Äquivalenzumformungen für das Umstellen von Formeln und linearen Ungleichungen anwenden.
5 5  
6 -== Äquivalenzumformungen ==
7 -
8 8  {{aufgabe id="Äquivalenzumformungen" afb="I" kompetenzen="K5" Zeit="2" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Gleichungen/Allgemeines]]" cc="BY-SA"}}
9 9  Gib an, was korrekte Äquivalenzumformungen sind!
10 10  
... ... @@ -28,8 +28,6 @@
28 28  1. Aus {{formula}}x=0{{/formula}} folgt {{formula}}L= \{\} {{/formula}}
29 29  {{/aufgabe}}
30 30  
31 -== Lösen von Gleichungen ==
32 -
33 33  {{aufgabe id="Prüfen der Lösung" afb="I" kompetenzen="K5" zeit="2" quelle="[[KMap>>https://kmap.eu/app/browser/Mathematik/Gleichungen/Allgemeines]]" cc="BY-SA"}}
34 34  Prüfe, ob {{formula}}x=0{{/formula}} oder {{formula}}x=1{{/formula}} eine Lösung der Gleichung ist!
35 35  
... ... @@ -36,7 +36,6 @@
36 36  {{formula}} 3(4x+4)=4(3-4x) {{/formula}}
37 37  {{/aufgabe}}
38 38  
39 -
40 40  {{aufgabe id="Lösen von linearen Gleichungen" afb="I" quelle="Team Mathebrücke" kompetenzen="K5" zeit="17" cc="by-sa" tags="mathebrücke"}}
41 41  Bestimme die Lösungsmenge der folgenden Gleichungen.
42 42  
... ... @@ -54,13 +54,11 @@
54 54  {{/aufgabe}}
55 55  
56 56  {{aufgabe id="Lösungsvielfalt" afb="III" quelle="Simone Kanzler, Stephanie Wietzorek" kompetenzen="K1, K2, K5, K6" zeit="6" cc="by-sa"}}
57 -
58 58  Es ist folgende Gleichung gegeben:
59 59  
60 60  {{formula}} x \cdot (2x - 🖤)=2x^2 + 3x {{/formula}}
61 61  
62 62  Für 🖤 darf eine beliebige reelle Zahl eingesetzt werden. Begründe, dass die Gleichung immer lösbar ist und gehe auf die Anzahl an Lösungen ein.
63 -
64 64  {{/aufgabe}}
65 65  
66 66  {{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K6" zeit="2" cc="by-sa" tags="mathebrücke"}}
... ... @@ -74,8 +74,6 @@
74 74  ☐ {{formula}}y{{/formula}} darf auf keinen Fall den Wert Null annehmen.
75 75  {{/aufgabe}}
76 76  
77 -== Bruchgleichungen ==
78 -
79 79  {{aufgabe id="Definitionsmenge" afb="I" kompetenzen="K2, K5" zeit="3" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
80 80  Gib die Defintionsmenge der Brüche an.
81 81  (% style="width: 100%; white-space: nowrap" class="border" %)
... ... @@ -98,28 +98,26 @@
98 98  1. {{formula}}\frac{1}{b-7}; \frac{1}{7-b} {{/formula}}
99 99  {{/aufgabe}}
100 100  
101 -{{aufgabe id="Überprüfen der Lösung" afb="III" kompetenzen="K1, K2, K6" zeit="7" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
92 +{{aufgabe id="Überprüfen der Lösung" afb="II" kompetenzen="K1, K2, K6" zeit="7" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
102 102   (%class="123"%)
103 103  Überprüfe, ob der angegebene Wert für x eine Lösung der Gleichung ist!
104 104  
105 105  1. {{formula}}\frac{1}{5x+2}=1 \quad , x=-\frac{1}{5} {{/formula}}
106 106  1. {{formula}}\frac{x+1}{2x-5}=3 \quad , x=\frac{5}{2} {{/formula}}
107 -
108 -
109 109  {{/aufgabe}}
110 110  
111 -{{aufgabe id="Rechenschritte" afb="III" kompetenzen="K1, K2, K6" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
112 -Azra zeigt im Unterricht ihre Hausaufgabe. Daraufhin meldet sich Alex und meint, er hätte die Definitionsmenge anders dargestellt und auch eine andere Lösungsmenge herausbekommen. Begründe, ob Alex recht haben:
113 -
100 +{{aufgabe id="Rechenschritte" afb="II" kompetenzen="K1, K2, K6" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
101 +Azra zeigt im Unterricht ihre Hausaufgabe. Daraufhin meldet sich Alex und meint, er hätte die Gleichung anders dargestellt und auch eine andere Definitionsmenge herausbekommen. Begründe, ob Alex recht hat. Bestimme die Lösungsmenge der Gleichung.
102 +
103 +Azra
114 114  {{formula}}\frac{1}{4x-3}=3 {{/formula}}
115 -{{formula}} D = \{\frac{3}{4}\}{{/formula}}
116 -{{formula}} 1 = 12x - 9 {{/formula}}
117 -{{formula}}12x = 10 {{/formula}}
118 -{{formula}}x = \frac{12}{10}{{/formula}}
119 -{{formula}} L = \{\frac{12}{10}\} {{/formula}}
105 +{{formula}} D = \{\frac{3}{4}\}{{/formula}}
106 +Alex
107 +{{formula}} 1 = 12x - 9 {{/formula}}
108 +{{formula}} D = \mathbb{R}{{/formula}}
120 120  {{/aufgabe}}
121 121  
122 -{{aufgabe id="Bruchgleichungen" afb="I, II" kompetenzen="K2, K4, K5" zeit="12" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
111 +{{aufgabe id="Bruchgleichungen" afb="I, II" kompetenzen="K5" zeit="12" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
123 123  Löse unter Angabe der Definitionsmenge folgende Gleichungen:
124 124   (%class="123"%)
125 125  1. {{formula}}\frac{10}{x}=5 {{/formula}}
... ... @@ -140,8 +140,6 @@
140 140  
141 141  {{/aufgabe}}
142 142  
143 -== Formeln ==
144 -
145 145  {{aufgabe id="Zinsen" afb="I" kompetenzen="K2, K5" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
146 146  Um die Jahreszinsen {{formula}} Z {{/formula}} (in €) zu berechnen, gilt folgende Formel:
147 147  {{formula}} Z = \frac{K \cdot p}{100} {{/formula}}
... ... @@ -165,7 +165,6 @@
165 165   1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Stelle diese Formel für {{formula}} A {{/formula}} auf.
166 166   1. Überprüfe, ob man die Höhe h mit der Formel {{formula}} 2 \cdot \frac{A}{a+c} {{/formula}} berechnen kann.
167 167   1. Forme die Formel für den Flächeninhalt des Trapezes mit Hilfe von Äquivalenzumformungen nach der längeren Seite um.
168 -
169 169  {{/aufgabe}}
170 170  
171 171  {{aufgabe id="Bremsweg" afb="III" kompetenzen="K1, K2, K3, K4, K5" zeit="18" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}
... ... @@ -178,7 +178,5 @@
178 178  1. Erläutere, warum sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet.
179 179  {{/aufgabe}}
180 180  
181 -
182 -
183 183  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
184 184