Änderungen von Dokument BPE 2.1 Äquivalenzumformungen
Zuletzt geändert von Martina Wagner am 2025/11/27 09:27
Von Version 61.2
bearbeitet von Holger Engels
am 2025/11/25 14:01
am 2025/11/25 14:01
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 66.1
bearbeitet von Martina Wagner
am 2025/11/25 14:37
am 2025/11/25 14:37
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.martinawagner - Inhalt
-
... ... @@ -89,7 +89,7 @@ 89 89 1. {{formula}}\frac{1}{b-7}; \frac{1}{7-b} {{/formula}} 90 90 {{/aufgabe}} 91 91 92 -{{aufgabe id="Überprüfen der Lösung" afb="II I" kompetenzen="K1, K2, K6" zeit="7" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}92 +{{aufgabe id="Überprüfen der Lösung" afb="II" kompetenzen="K1, K2, K6" zeit="7" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 93 93 (%class="123"%) 94 94 Überprüfe, ob der angegebene Wert für x eine Lösung der Gleichung ist! 95 95 ... ... @@ -97,18 +97,18 @@ 97 97 1. {{formula}}\frac{x+1}{2x-5}=3 \quad , x=\frac{5}{2} {{/formula}} 98 98 {{/aufgabe}} 99 99 100 -{{aufgabe id="Rechenschritte" afb="III" kompetenzen="K1, K2, K6" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 101 -Azra zeigt im Unterricht ihre Hausaufgabe. Daraufhin meldet sich Alex und meint, er hätte die Definitionsmenge anders dargestellt und auch eine andere Lösungsmenge herausbekommen. Begründe, ob Alex recht haben: 102 - 100 +{{aufgabe id="Rechenschritte" afb="II" kompetenzen="K1, K2, K6" zeit="5" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 101 +Azra zeigt im Unterricht ihre Hausaufgabe. Daraufhin meldet sich Alex und meint, er hätte die Gleichung anders dargestellt und auch eine andere Definitionsmenge herausbekommen. Begründe, ob Alex recht hat. Bestimme die Lösungsmenge der Gleichung. 102 + 103 +Azra 103 103 {{formula}}\frac{1}{4x-3}=3 {{/formula}} 104 -{{formula}} D = \{\frac{3}{4}\}{{/formula}} 105 -{{formula}} 1 = 12x - 9 {{/formula}} 106 -{{formula}}12x = 10 {{/formula}} 107 -{{formula}}x = \frac{12}{10}{{/formula}} 108 -{{formula}} L = \{\frac{12}{10}\} {{/formula}} 105 +{{formula}} D = \{\frac{3}{4}\}{{/formula}} 106 +Alex 107 +{{formula}} 1 = 12x - 9 {{/formula}} 108 +{{formula}} D = \mathbb{R}{{/formula}} 109 109 {{/aufgabe}} 110 110 111 -{{aufgabe id="Bruchgleichungen" afb="I, II" kompetenzen="K 2, K4, K5" zeit="12" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}}111 +{{aufgabe id="Bruchgleichungen" afb="I, II" kompetenzen="K5" zeit="12" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 112 112 Löse unter Angabe der Definitionsmenge folgende Gleichungen: 113 113 (%class="123"%) 114 114 1. {{formula}}\frac{10}{x}=5 {{/formula}} ... ... @@ -144,12 +144,12 @@ 144 144 Forme die Formel nach {{formula}} s {{/formula}} und {{formula}} t {{/formula}} um. 145 145 {{/aufgabe}} 146 146 147 -{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 147 +{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="10" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 148 148 Ein Trapez ist ein besonderes Viereck mit zwei parallelen Seiten, welche den Abstand {{formula}} h{{/formula}} voneinander besitzen. Die längere der parallelen Seiten soll mit {{formula}} a {{/formula}}, die kürzere mit {{formula}} c {{/formula}} bezeichnet werden. 149 149 [[image:Trapez.png||style="float:right;width:400px"]] 150 150 (%class="abc"%) 151 151 1. Beschrifte das Trapez gemäß der obigen Angaben mit den Parametern {{formula}} a {{/formula}},{{formula}} c {{/formula}} und{{formula}} h {{/formula}}. 152 - 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Stellediese Formel für {{formula}} A {{/formula}}auf.152 + 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Bestimme diese Formel für {{formula}} A {{/formula}}. 153 153 1. Überprüfe, ob man die Höhe h mit der Formel {{formula}} 2 \cdot \frac{A}{a+c} {{/formula}} berechnen kann. 154 154 1. Forme die Formel für den Flächeninhalt des Trapezes mit Hilfe von Äquivalenzumformungen nach der längeren Seite um. 155 155 {{/aufgabe}} ... ... @@ -156,12 +156,12 @@ 156 156 157 157 {{aufgabe id="Bremsweg" afb="III" kompetenzen="K1, K2, K3, K4, K5" zeit="18" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 158 158 Der Bremsweg {{formula}} s {{/formula}} in Metern ist die Strecke, die ein Fahrzeug nach dem Betätigen der Bremse noch zurücklegt, bis es vollständig zum Stehen kommt. 159 -In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{ V}{10}\cdot \frac{V}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt.160 -In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{ V^2}{2a} {{/formula}} berechnen, wobei {{formula}}V{{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}.159 +In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{v}{10}\cdot \frac{v}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt. 160 +In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{v^2}{2a} {{/formula}} berechnen, wobei {{formula}} v {{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}. 161 161 (%class="abc"%) 162 162 1. Berechne den Bremsweg in Metern mit der Formel aus der Fahrschule für eine Geschwindigkeit von {{formula}} 50 \frac{km}{h}{{/formula}} zum Zeitpunkt des Bremsvorgangs. 163 163 1. Berechne den Bremsweg mit der Formel aus der Physik für die selbe Geschwindigkeit zum Zeitpunkt des Bremsvorgangs für {{formula}} a = 4 {{/formula}} 164 -1. Erläutere,warumsich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet.164 +1. Zeige, dass sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet. 165 165 {{/aufgabe}} 166 166 167 167 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}