Zuletzt geändert von Holger Engels am 2025/06/18 08:21

Von Version 12.1
bearbeitet von Holger Engels
am 2025/06/18 08:21
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 1.1
bearbeitet von Holger Engels
am 2025/03/10 07:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -5,111 +5,9 @@
5 5  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann die gegenseitige Lage von zwei Geraden untersuchen.
6 6  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann die gemeinsame Punkte von zwei Geraden berechnen.
7 7  
8 -{{aufgabe id="Tims Schnittpunktberechnung" afb="I" kompetenzen="" quelle="Team Mathebrücke" cc="by-sa" tags="mathebrücke"}}
9 -Tim hat folgende Aufgabe als Hausaufgabe bekommen:
10 -Berechne den Schnittpunkt der beiden Geraden
11 -
12 -Tims Lösung sieht folgendermaßen aus:
13 -
14 -//Ansatz: "Gleichsetzen"//
15 -
16 -{{formula}}
17 -\begin{align}
18 --2x+1&=3 &&\mid :(-2)\\
19 -x+1 &=-\frac{3}{2} &&\mid -2 \\
20 -x &= \frac{1}{2} \\
21 -\rightarrow S\left(\frac{1}{2}\Bigl|3\right)
22 -\end{align}
23 -{{/formula}}
24 -
25 -Untersuche die Lösungsschritte und entscheide, ob das Ergebnis richtig
26 -oder falsch ist. Korrigiere falls nötig.
27 -
28 -{{lehrende}}
29 -**Sinn dieser Aufgabe**:
30 -* Wiederholung Schnittpunktansatz
31 -* Umformungen
32 -{{/lehrende}}
8 +{{aufgabe id="Lalala" afb="I" kompetenzen="K5" quelle="Mathebrücke" zeit="2" cc="by-sa" tags="mathebrücke"}}
9 +Aufgabentext
33 33  {{/aufgabe}}
34 34  
35 -{{aufgabe id="Schnitt von Geraden" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
36 -Klara möchte den Schnittpunkt von zwei Geraden ausrechnen:
37 -
38 -{{formula}}
39 -\begin{align}
40 -\frac{1}{2}x-4&=-\frac{2}{3}x+7 \\
41 -\frac{3}{2}x-12&=-2x+7
42 -\end{align}
43 -{{/formula}}
44 -
45 -Erkläre, was Klara falsch gemacht hat.
46 -
47 -{{lehrende}}
48 -**Sinn dieser Aufgabe:**
49 -Fehler erkennen und vermeiden
50 -{{/lehrende}}
51 -{{/aufgabe}}
52 -
53 -{{aufgabe id="Lineare Gleichungen lösen" afb="II" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
54 -Begründe für jede der folgenden Aufgabenstellungen, ob sie zu der Gleichung {{formula}}3x+2=0{{/formula}} führt.
55 -(%class=abc%)
56 -1. Berechne den Schnittpunkt der Geraden {{formula}}g: \ y=3x+2{{/formula}} mit der x-Achse.
57 -1. Berechne den Schnittpunkt mit der y-Achse der Geraden mit der Gleichung {{formula}}y=3x+2{{/formula}}.
58 -1. Berechne den Schnittpunkt der Geraden //h// mit der Gleichung {{formula}}y=3x+2{{/formula}} und der Geraden //g// mit {{formula}}g: \ y=0{{/formula}}.
59 -
60 -{{lehrende}}
61 -**Sinn dieser Aufgabe:**
62 -Fragestellung zu einem Lösungsansatz angeben
63 -{{/lehrende}}
64 -{{/aufgabe}}
65 -
66 -{{aufgabe id="Schnittpunkt von Geraden" afb="III" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
67 -Klara will den Schnittpunkt zweier Geraden berechnen. Nach einigen Umformungsschritten erhält sie
68 -(%class=abc%)
69 -1. die Gleichung 0=3
70 -1. die Gleichung 3=3
71 -Klara schließt daraus, dass sie sich verrechnet hat. Was sagst du dazu?
72 -
73 -{{lehrende}}
74 -**Sinn dieser Aufgabe:**
75 -* Ergebnis interpretieren
76 -* Umgang mit nicht eindeutig lösbaren Gleichungen üben
77 -{{/lehrende}}
78 -{{/aufgabe}}
79 -
80 -{{aufgabe id="Schnittpunkt von Geraden 2" afb="III" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
81 -Durch die Gleichungen {{formula}}2x+3y=4{{/formula}} und {{formula}}4x-6y=4{{/formula}} sind zwei Geraden gegeben.
82 -Klara möchte deren Schnittpunkt bestimmen und beginnt zu rechnen:
83 -
84 -{{formula}}
85 -\begin{align}
86 -2x+3y&=4x-6y \\
87 -3y+6y&=4x-2x\\
88 -9y&=2x \\
89 -y&=\frac{2}{9}x
90 -\end{align}
91 -{{/formula}}
92 -
93 -Beschreibe die einzelnen Umformungsschritte.
94 -Beurteile, ob Klaras Lösungsweg zum Ziel führt.
95 -Was bedeutet das Ergebnis?
96 -{{/aufgabe}}
97 -
98 -{{aufgabe id="Schnittpunkt von Geraden 2" afb="III" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
99 -Gegeben sind die Funktionen {{formula}}f{{/formula}} mit {{formula}}f(x) = -\frac{1}{2}x + \frac{7}{2}{{/formula}} und {{formula}}g{{/formula}} mit {{formula}}g(x) = -3x - 3{{/formula}}.
100 -
101 -Prüfe, ob sich das Schaubild von {{formula}}f{{/formula}} und die Orthogonale zum Schaubild von {{formula}}g{{/formula}} durch {{formula}}P\left(-3 \left| \frac{28}{3}\right.\right){{/formula}} im ersten Quadranten schneiden.
102 -{{/aufgabe}}
103 -
104 -{{aufgabe id="Schnittwinkel von Geraden" afb="I" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}}
105 -Gegeben sind die Geraden {{formula}}g_1: y=\frac{1}{2}x+2{{/formula}} und {{formula}}g_2: y=3x-3{{/formula}}.
106 -(%class=abc%)
107 -1. Begründe, warum sich die beiden Geraden schneiden.
108 -1. Zeichne die Geraden in ein Koordinatensystem und lies jeweils den Steigungswinkel (Winkel zur positiven x-Achse) ab.
109 -1. Berechne jeweils den Steigungswinkel von {{formula}}g_1{{/formula}} und {{formula}}g_2{{/formula}}.
110 -1. Berechne den Schnittwinkel der Geraden {{formula}}g_1{{/formula}} und {{formula}}g_2{{/formula}}.
111 -Messe diesen in deiner Zeichnung nach.
112 -{{/aufgabe}}
113 -
114 114  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
115 115