Änderungen von Dokument BPE 5.2 Kongruenz, Kongruenzsätze und Konstruierbarkeit
Zuletzt geändert von Holger Engels am 2025/12/01 19:34
Von Version 58.1
bearbeitet von Nicole Böhringer
am 2025/11/06 14:09
am 2025/11/06 14:09
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 71.1
bearbeitet von Martin Rathgeb
am 2025/11/17 00:33
am 2025/11/17 00:33
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. bgr1 +XWiki.martinrathgeb - Inhalt
-
... ... @@ -9,31 +9,30 @@ 9 9 {{/aufgabe}} 10 10 11 11 {{aufgabe id="Vierecke überprüfen" afb="II" kompetenzen="K1,K5" quelle="Nicole Böhringer, Slavko Lamp" zeit="4" cc="by-sa"}} 12 -Be gründe, welche der Figuren A bis E kongruent zueinander sind.12 +Beurteile, welche der Figuren A bis E kongruent zueinander sind. 13 13 [[image:Bild 2.png||width="500" style="display:block;margin-left:auto;margin-right:auto"]] 14 14 {{/aufgabe}} 15 15 16 -{{aufgabe id="Konstruk tionvon Dreiecken" afb="II" kompetenzen="K1,K2,K6" quelle="Nicole Böhringer, Slavko Lamp" zeit="8" cc="by-sa"}}17 - NutzedeinWissenüber Kongruenzsätzeund entscheide, ob die Konstruktion eines Dreiecks mit den Angaben eindeutig, mehrdeutig oder unmöglich ist.16 +{{aufgabe id="Konstruierbarkeit von Dreiecken" afb="II" kompetenzen="K1,K2,K6" quelle="Nicole Böhringer, Slavko Lamp, Martin Rathgeb" zeit="10" cc="by-sa"}} 17 +Beurteile (insbesondere mittels Kongruenzsätzen), ob die Konstruktion eines Dreiecks mit den Angaben eindeutig, mehrdeutig oder unmöglich ist. 18 18 (% class="abc" %) 19 -1. ((({{formula}}\alpha = 63^\circ; b = 5,7cm; c = 12,8cm{{/formula}}20 - )))21 -1. ((({{formula}}\beta =53^\circ; b = 4,5cm;c=5cm{{/formula}}22 - )))23 -1. ((({{formula}}a = 6cm;\beta =42^\circ; \gamma =28^\circ{{/formula}}24 - )))25 -1. ((({{formula}} \beta= 42^\circ;\gamma=28^\circ;a=3cm{{/formula}}26 - )))19 +1. {{formula}}\alpha = 63^\circ; \ b = 5,\! 7\text{ cm}; \ c = 12,\! 8\text{ cm}{{/formula}} 20 +1. {{formula}}\beta = 53^\circ; \ b = 4, \! 5\text{ cm}; \ c = 5\text{ cm}{{/formula}} 21 +1. {{formula}}a = 6\text{ cm}; \ \beta = 42^\circ; \ \gamma = 28^\circ{{/formula}} 22 +1. {{formula}}\ a = 3\text{ cm}; \ \beta = 103^\circ ; \ \gamma = 87^\circ{{/formula}} 23 +1. {{formula}} \alpha = 60^\circ;\ \beta = 23^\circ ; \ \gamma = 97^\circ{{/formula}} 24 +1. {{formula}} \alpha = 50^\circ;\ \beta = 60^\circ ; \ \gamma = 55^\circ{{/formula}} 25 +1. {{formula}}a = 8\text{ cm}; \ b = 4,\!5\text{ cm}; \ c = 5\text{ cm}{{/formula}} 26 +1. {{formula}}a = 12\text{ cm}; \ b = 6\text{ cm}; \ c = 5\text{ cm}{{/formula}} 27 27 {{/aufgabe}} 28 28 29 -{{aufgabe id="Problemlösen" afb="III" kompetenzen="K2" quelle="Nicole Böhringer; Martin Rathgeb" zeit="10" cc="by-sa"}} 30 -Stell dir vor, ihr plant im Garten der Schule zwei Beete anzulegen. Eines soll von deiner Klasse, das andere von deiner Parallelklasse bepflanzt werden. 31 -Beurteile mit Hilfe der Kongruenzzätze für Dreiecke, ob die beiden Beete tatsächlich die gleiche Form und Größe haben. Sind die beiden Beete kongruent? 29 +{{aufgabe id="Problemlösen" afb="III" kompetenzen="K1,K2,K4,K6" quelle="Nicole Böhringer, Martin Rathgeb" zeit="30" cc="by-sa"}} 30 +Stell dir vor, ihr plant im Garten der Schule zwei Beete anzulegen. Eines soll von deiner Klasse, das andere von deiner Parallelklasse bepflanzt werden. 32 32 [[image:Bild 3.png||width="500" style="display:block;margin-left:auto;margin-right:auto"]] 33 33 34 -Zusatz: Zeichne ein drittes Viereck, das zu keinem der beiden Vierecke kongruent ist, das aber aus zwei Dreiecken zusammengesetzt ist, die kongruent sind zu Teilfiguren in den gegebenen Vierecken. 35 - 33 +(% class="abc" %) 34 +1. Untersuche, ob die beiden Vierecke 8a und 8b kongruent sind. -- Begründe dein Ergebnis auf Grundlage der Struktur der beiden Figuren. 35 +1. Zeichne ein drittes Viereck, das nicht zu 8a und 8b kongruent ist, das sich aber aus zwei Dreiecken zusammensetzen lässt, die jeweils kongruent zu Dreiecken aus 8a und 8b sind. -- Erkläre anschließend, woran man erkennen kann, dass dein Viereck trotz der gleichen Dreiecke nicht kongruent ist. 36 36 {{/aufgabe}} 37 37 38 38 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 39 -