Von Version 143.1
bearbeitet von Holger Engels
am 2024/07/11 20:26
am 2024/07/11 20:26
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -37,37 +37,13 @@ 37 37 1. Ermittle mithilfe des Funktionsterms von {{formula}}k{{/formula}} den Flächeninhalt der gesamten in der 2. Abbildung gezeigten rechteckigen Vorderseite des Holzblocks. 38 38 {{/aufgabe}} 39 39 40 -{{aufgabe id="CO2-Konzentration trigonometrisch" afb="II" kompetenzen="K1, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_B_Analysis_WTR_1.pdf]]" niveau="e" tags="iqb"}} 41 -In einer Messstation wird seit 1958 kontinuierlich die CO,,2,,-Konzentration in der Luft gemessen, die in ppm (parts per million) angegeben wird. Innerhalb eines Jahres schwankt die CO,,2,,-Konzentration. Für einen bestimmten Zeitraum von acht Monaten lassen sich die gemessenen Werte modellhaft durch die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}k: x \mapsto 3,3\cdot \sin\left(\frac{\pi}{6}x\right)+406{{/formula}} beschreiben. Dabei ist {{formula}}x{{/formula}} die in diesem Zeitraum vergangene Zeit in Monaten und {{formula}}k(x){{/formula}} die CO,,2,,-Konzentration in ppm. Vereinfachend wird davon ausgegangen, dass jeder Monat 30 Tage hat. 42 - 43 -Gib an, wie der Graph von {{formula}}k{{/formula}} schrittweise aus dem Graphen der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}s: x \mapsto \sin(x){{/formula}} hervorgeht. Beurteile, ob die Reihenfolge der einzelnen Schritte von Bedeutung ist. 44 -{{/aufgabe}} 40 +{{aufgabe id="Funktionsschar Graph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_5.pdf]]" niveau="e" tags="iqb" cc=""}} 41 +Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a{{/formula}} mit {{formula}}f_a\left(x\right)=x\cdot e^{a\cdot x},a\in\mathbb{R},a\neq0{{/formula}}. Für jeden Wert von {{formula}}a{{/formula}} besitzt die Funktion {{formula}}f_a{{/formula}} genau eine Extremstelle. 45 45 46 - {{aufgabeid="Anzahl Gleichungslösungen"afb=""kompetenzen="K1,K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_A_10.pdf]]"niveau="e"tags="iqb"}}47 - Gegebensinddie{{formula}}\mathbb{R}{{/formula}}definiertenFunktionen{{formula}}f:x \mapsto\cos(x){{/formula}} und{{formula}} g_k: x \mapstok\cdotx^2{{/formula}}mit {{formula}} k \in \mathbb{R}^+{{/formula}}.Die Abbildungzeigt dieGraphenvon{{formula}}f{{/formula}} und{{formula}}g_{\frac{1}{50}}{{/formula}}.43 +1. Begründe, dass der Graph von {{formula}}f_a{{/formula}} für {{formula}}x<0{{/formula}} unterhalb der //x//-Achse verläuft. 44 +1. Beide Abbildungen zeigen einen Graphen der Schar, einen der beiden für einen positiven Wert von {{formula}}a{{/formula}}. Entscheide, welche Abbildung dies ist, und begründe deine Entscheidung. 48 48 49 -Entscheide, ob es Werte von {{formula}}k{{/formula}} gibt, für die die Gleichung {{formula}}f(x)=g_k(x){{/formula}} mehr als 2022 Lösungen hat. Begründe deine Entscheidung. 50 - 51 -[[image:cosx,kxhoch2.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]] 52 - 53 53 {{/aufgabe}} 54 54 55 -{{aufgabe id="Sinusparameter bestimmen" afb="II" kompetenzen="K1,K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_8.pdf]]" niveau="e" tags="iqb"}} 56 - 57 -Betrachtet wird die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}} s(x)=a\cdot \sin(b\cdot x)+1{{/formula}}. Die Punkte {{formula}}E_1\left(-2|-1\right){{/formula}} und {{formula}}E_2\left(2|3\right){{/formula}} sind direkt aufeinanderfolgende Extrempunkte des Graphen von {{formula}}s{{/formula}}. 58 - 59 -Bestimme die Werte von {{formula}}a{{/formula}} und {{formula}}b{{/formula}}. 60 - 61 -{{/aufgabe}} 62 - 63 - 64 -{{aufgabe id="Kosinusfunktion aufstellen" afb="" kompetenzen="" quelle="[[IQB>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_12.pdf]]" niveau="e" tags="iqb"}} 65 -Eine in {{formula}}\mathbb{R}{{/formula}} definierte Kosinusfunktion {{formula}}f{{/formula}} hat die Periode {{formula}}p{{/formula}}. Der Punkt {{formula}}\left(\frac{p}{2}\left|p\right){{/formula}} ist ein Hochpunkt des Graphen von {{formula}}f{{/formula}}, der Punkt {{formula}}\left(\frac{p}{4}\left|\frac{p}{2}\right){{/formula}} ein Wendepunkt. 66 - 67 -Bestimme eine Funktionsgleichung der Kosinusfunktion in Abhängigkeit von {{formula}}p{{/formula}}. 68 - 69 -{{/aufgabe}} 70 - 71 - 72 72 == IQB-Index == 73 73 {{getaggt}}iqb{{/getaggt}}