Von Version 143.1
bearbeitet von Holger Engels
am 2024/07/11 20:26
am 2024/07/11 20:26
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -15,7 +15,7 @@ 15 15 {{/aufgabe}} 16 16 17 17 18 -{{aufgabe id="Spielzeug-Holzbrücke Symmetrie" afb="III" kompetenzen="K1, K3, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" cc=""}} 18 +{{aufgabe id="Spielzeug-Holzbrücke Symmetrie" afb="III" kompetenzen="K1, K3, K4, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2021/abitur/pools2021/mathematik/erhoeht/2021_M_erhoeht_B_5.pdf]]" niveau="e" tags="iqb" cc="by"}} 19 19 Die Abbildung zeigt modellhaft den Längsschnitt einer dreiteiligen Brücke aus Holz für eine Spielzeugeisenbahn. Die Züge können sowohl über die Brücke fahren als auch darunter hindurch. 20 20 21 21 [[image:SpielzeugHolzbrücke.png||width="750"]] ... ... @@ -37,37 +37,35 @@ 37 37 1. Ermittle mithilfe des Funktionsterms von {{formula}}k{{/formula}} den Flächeninhalt der gesamten in der 2. Abbildung gezeigten rechteckigen Vorderseite des Holzblocks. 38 38 {{/aufgabe}} 39 39 40 -{{aufgabe id="CO2-Konzentration trigonometrisch" afb="II" kompetenzen="K1, K4, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2020/abitur/pools2020/abitur/pools2020/mathematik/erhoeht/2020_M_erhoeht_B_Analysis_WTR_1.pdf]]" niveau="e" tags="iqb"}} 41 -In einer Messstation wird seit 1958 kontinuierlich die CO,,2,,-Konzentration in der Luft gemessen, die in ppm (parts per million) angegeben wird. Innerhalb eines Jahres schwankt die CO,,2,,-Konzentration. Für einen bestimmten Zeitraum von acht Monaten lassen sich die gemessenen Werte modellhaft durch die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}k: x \mapsto 3,3\cdot \sin\left(\frac{\pi}{6}x\right)+406{{/formula}} beschreiben. Dabei ist {{formula}}x{{/formula}} die in diesem Zeitraum vergangene Zeit in Monaten und {{formula}}k(x){{/formula}} die CO,,2,,-Konzentration in ppm. Vereinfachend wird davon ausgegangen, dass jeder Monat 30 Tage hat. 42 - 43 -Gib an, wie der Graph von {{formula}}k{{/formula}} schrittweise aus dem Graphen der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}s: x \mapsto \sin(x){{/formula}} hervorgeht. Beurteile, ob die Reihenfolge der einzelnen Schritte von Bedeutung ist. 44 -{{/aufgabe}} 40 +{{aufgabe id="Funktionsschar Graph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_5.pdf]]" niveau="e" tags="iqb" cc="by"}} 41 +Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a{{/formula}} mit {{formula}}f_a\left(x\right)=x\cdot e^{a\cdot x}, \ a\in\mathbb{R}, \ a\neq0{{/formula}}. Für jeden Wert von {{formula}}a{{/formula}} besitzt die Funktion {{formula}}f_a{{/formula}} genau eine Extremstelle. 45 45 46 -{{aufgabe id="Anzahl Gleichungslösungen" afb="" kompetenzen="K1, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_A_10.pdf]]" niveau="e" tags="iqb"}} 47 -Gegeben sind die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}} f: x \mapsto \cos(x){{/formula}} und {{formula}} g_k: x \mapsto k\cdot x^2{{/formula}} mit {{formula}} k \in \mathbb{R}^+{{/formula}}. Die Abbildung zeigt die Graphen von {{formula}}f{{/formula}} und {{formula}}g_{\frac{1}{50}}{{/formula}}. 43 +1. Begründe, dass der Graph von {{formula}}f_a{{/formula}} für {{formula}}x<0{{/formula}} unterhalb der //x//-Achse verläuft. 44 +1. Beide Abbildungen zeigen einen Graphen der Schar, einen der beiden für einen positiven Wert von {{formula}}a{{/formula}}. Entscheide, welche Abbildung dies ist, und begründe deine Entscheidung. 45 +[[image:Graphenfunktionsschar.png||width="550" style="display:block;margin-left:auto;margin-right:auto"]] 48 48 49 -Entscheide, ob es Werte von {{formula}}k{{/formula}} gibt, für die die Gleichung {{formula}}f(x)=g_k(x){{/formula}} mehr als 2022 Lösungen hat. Begründe deine Entscheidung. 50 - 51 -[[image:cosx,kxhoch2.PNG||width="500" style="display:block;margin-left:auto;margin-right:auto"]] 47 +__Hinweis__: 48 +Der Begriff „Schar“ beziehungsweise „Funktionsschar“ ist nicht konform zum Bildungsplan für berufliche Gymnasien in Baden-Württemberg. Deswegen wäre eine derartige Aufgabe für die Abiturprüfung an beruflichen Gymnasien nicht zulässig. 52 52 53 -{{/aufgabe}} 50 +**Eine bildungsplankonforme Variante wäre zum Beispiel**: 51 +Betrachtet wird die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x\cdot e^{a\cdot x}{{/formula}}. Dabei ist {{formula}}a\in\mathbb{R}, \ a\neq0{{/formula}} eine feste Zahl. Die Funktion {{formula}}f{{/formula}} besitzt genau eine Extremstelle. 54 54 55 -{{aufgabe id="Sinusparameter bestimmen" afb="II" kompetenzen="K1,K2, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2022/abitur/pools2022/mathematik/erhoeht/2022_M_erhoeht_B_8.pdf]]" niveau="e" tags="iqb"}} 56 - 57 -Betrachtet wird die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}} s(x)=a\cdot \sin(b\cdot x)+1{{/formula}}. Die Punkte {{formula}}E_1\left(-2|-1\right){{/formula}} und {{formula}}E_2\left(2|3\right){{/formula}} sind direkt aufeinanderfolgende Extrempunkte des Graphen von {{formula}}s{{/formula}}. 58 - 59 -Bestimme die Werte von {{formula}}a{{/formula}} und {{formula}}b{{/formula}}. 60 - 53 +1. Begründe, dass der Graph von {{formula}}f{{/formula}} für {{formula}}x<0{{/formula}} unterhalb der //x//-Achse verläuft. 54 +1. Beide Abbildungen zeigen einen Graphen für zwei unterschiedliche Werte von {{formula}}a{{/formula}}, einen der beiden für einen positiven Wert von {{formula}}a{{/formula}}. Entscheide, welche Abbildung dies ist, und begründe deine Entscheidung. 55 +[[image:Graphenfunktionsschar.png||width="550" style="display:block;margin-left:auto;margin-right:auto"]] 61 61 {{/aufgabe}} 62 62 58 +{{aufgabe id="Rechteck im Graphen" afb="" kompetenzen="K1,K2,K4,K5,K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_7.pdf]]" niveau="e" tags="iqb" cc="by"}} 59 +Für eine Zahl {{formula}}a>0{{/formula}} zeigt die Abbildung den Graphen {{formula}}G{{/formula}} der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=x^3-2ax^2+a^2x{{/formula}} sowie die Gerade {{formula}}h{{/formula}}. {{formula}}G{{/formula}} und {{formula}}h{{/formula}}schneiden sich im Koordinatenursprung und {{formula}}h{{/formula}} verläuft senkrecht zur Tangente an {{formula}}G{{/formula}} im Koordinatenursprung. Zudem berühren sich {{formula}}G{{/formula}} und die x-Achse im Punkt {{formula}}\left(a\middle|0\right){{/formula}}. 60 +Betrachtet wird dasjenige Rechteck, das die folgenden Eigenschaften besitzt: 61 +* Die beiden gemeinsamen Punkte von {{formula}}G{{/formula}} und der x-Achse sind zwei benachbarte Eckpunkte des Rechtecks. 62 +* Eine Diagonale liegt auf der Geraden {{formula}}h{{/formula}}. 63 63 64 -{{aufgabe id="Kosinusfunktion aufstellen" afb="" kompetenzen="" quelle="[[IQB>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_12.pdf]]" niveau="e" tags="iqb"}} 65 -Eine in {{formula}}\mathbb{R}{{/formula}} definierte Kosinusfunktion {{formula}}f{{/formula}} hat die Periode {{formula}}p{{/formula}}. Der Punkt {{formula}}\left(\frac{p}{2}\left|p\right){{/formula}} ist ein Hochpunkt des Graphen von {{formula}}f{{/formula}}, der Punkt {{formula}}\left(\frac{p}{4}\left|\frac{p}{2}\right){{/formula}} ein Wendepunkt. 64 +Skizziere das Rechteck in der Abbildung und zeige, dass der Flächeninhalt des Rechtecks unabhängig von {{formula}}a{{/formula}} ist. 66 66 67 - BestimmeeineFunktionsgleichung derKosinusfunktioninAbhängigkeitvon {{formula}}p{{/formula}}.66 +[[image:FunktionRechteck.PNG||width="250" style="display:block;margin-left:auto;margin-right:auto"]] 68 68 69 69 {{/aufgabe}} 70 70 71 - 72 72 == IQB-Index == 73 73 {{getaggt}}iqb{{/getaggt}}
- FunktionRechteck.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +42.6 KB - Inhalt
- Graphenfunktionsschar.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +9.8 KB - Inhalt