Von Version 82.1
bearbeitet von Holger Engels
am 2023/11/21 19:00
am 2023/11/21 19:00
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -188,3 +188,24 @@ 188 188 Im Unterricht eines J2-Kurses soll die Funktion {{formula}}f(x)=\frac{1}{2x}{{/formula}} aufgeleitet werden. Johann rechnet mit der Kettenregel der Aufleitung wie folgt: {{formula}}F(x)=\frac{1}{2}\ln(|2x|){{/formula}}. Johannes mag die Kettenregel nicht und formt den Term von //f// zunächst um: {{formula}}f(x)=\frac{1}{2}\cdot\frac{1}{x}{{/formula}}, denn danach wird die Aufleitung ganz einfach: {{formula}}F(x)=\frac{1}{2}\ln(|x|){{/formula}}. Die beiden geraten in eine Diskussion darüber, welche Lösung richtig ist. Überprüfe dies. 189 189 {{/aufgabe}} 190 190 191 + 192 +{{aufgabe id="Gaußsche Summenformel" afb="" Kompetenzen="" tags="" quelle="" cc="BY-SA" zeit=""}} 193 +Die Summe der ersten //n// natürlichen Zahlen 1 + 2 + 3 + ⋯ + //n// kann man mit der 194 +sogenannten Gaußschen Summenformel berechnen. 195 +[[image:Gaußsche Summenformel.PNG||width="420"]] 196 + 197 +{{lehrende}} 198 +**Variante 1:**Offene Aufgabe für den Unterricht & für die Klassenarbeit 199 +Ermittle diese Formel mit Hilfe der obigen grafischen Darstellung 200 + 201 +**Variante 2:** Kleinere Klassenarbeitsvariante, Vergleich von Strategien, Verallgemeinerung 202 +Drei Mitschüler legen dir die folgenden Ergebnisse vor. 203 +**Schüler 1:** 1 + 2 + 3 +{{formula}}\dots{{/formula}} + n =n(n+1) 204 +**Schüler 2:** 1 + 2 + 3 +{{formula}}\dots{{/formula}} + n ={{formula}}\frac{1}{6}{{/formula}} n(n+1)(n+2) 205 +**Schüler 3:** 1 + 2 + 3 +{{formula}}\dots{{/formula}} + n ={{formula}}\frac{1}{2}{{/formula}} n(n+1) 206 +Begründe, welcher Schüler die richtige Formel gefunden hat und erkläre, warum 207 +die folgende grafische Darstellung bei der Ermittlung der richtigen Summenformel helfen kann. 208 +{{/lehrende}} 209 +{{/aufgabe}} 210 + 211 +
- Gaußsche Summenformel.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +149.3 KB - Inhalt
- Nichomachus.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +79.2 KB - Inhalt