Änderungen von Dokument BPE 1 Einheitsübergreifend

Zuletzt geändert von Holger Engels am 2025/01/12 21:23

Von Version 17.1
bearbeitet von Holger Engels
am 2023/11/28 09:55
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 16.1
bearbeitet von akukin
am 2023/11/27 22:46
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Titel
... ... @@ -1,1 +1,1 @@
1 -BPE 1 Einheitsübergreifend
1 +BPE_1
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -1,20 +1,22 @@
1 1  {{aufgabe id="Gitterpunkte" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}}
2 2  Legt man **rechtwinklige Dreiecke** so auf ein Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**.
3 3  
4 -Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
5 -
6 -Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} a {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
7 -
8 -Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg).
9 -
10 10  {{lehrende}}
11 -**Variante 1:** Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe:
12 -Finde für solche Dreiecke allgemeine Formeln, mit denen sich
13 -* die Anzahl der Gitterpunkte auf dem **Rand**
14 -* die Anzahl der Gitterpunkte im **Inneren des Dreiecks in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt.
5 +**__Variante 1:__ Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe:**
6 +Finden Sie für solche Dreiecke allgemeine Formeln, mit denen sich
7 +*die Anzahl der Gitterpunkte auf dem **Rand**
8 +*die Anzahl der Gitterpunkte im **Inneren des Dreiecks**
9 +**in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt.
15 15  //Der horizontale/vertikale Abstand der Gitterpunkte beträgt eine Längeneinheit (1 LE).//
16 16  
17 -**Variante 2:** Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen
12 +
13 +**__Variante 2:__ Kleinere Klassenarbeitsaufgabe, Richtige Lösung finden**
14 +Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
15 +
16 +Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} a {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
17 +Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg).
18 +(% style="color:black" %)
19 +**__Variante 3:__ Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen**
18 18  Jemand behauptet: Ein solches rechtwinkliges Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} besitzt {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
19 19  Zeige, dass diese Behauptung richtig ist.
20 20  {{/lehrende}}
... ... @@ -38,15 +38,22 @@
38 38  
39 39  Übertrage beide Formeln für das 9-Eck auf eine allgemeine Formel für das n-Eck.
40 40  {{/lehrende}}
41 -{{/aufgabe}}
42 42  
43 43  {{aufgabe id="Fussball" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc=""}}
44 44  [[image:Fussball.PNG||width="550"]] (Bildquellen:Postbank)
45 -
46 -[[image:Fußballspielfläche.PNG||width="250" style="float: left; margin-right: 24px"]]Inmitten von wie vielen Fußbällen sitzen Franz Beckenbauer und Oliver Bierhoff hier im Borussia-Park von Mönchengladbach?
47 -
48 -Die Spielfläche wurde vor der WM 2006 zu PR-Zwecken von 320 Mitarbeitern einer großen deutschen Bank komplett mit Fußbällen belegt.
49 -
50 -1. Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle.
51 -1. Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind.
46 +
47 +[[image:Fußballspielfläche.PNG||width="250" style="float: left"]]
48 + Inmitten von wie vielen Fußbällen sitzen
49 + Franz Beckenbauer und Oliver Bierhoff
50 + hier im Borussia-Park von Mönchengladbach?
51 +
52 + Die Spielfläche wurde vor der WM 2006 zu
53 + PR-Zwecken von 320 Mitarbeitern einer
54 + großen deutschen Bank komplett mit
55 + Fußbällen belegt.
56 +
57 +a) Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle.
58 +
59 +b) Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte.
60 +Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind.
52 52  {{/aufgabe}}