Änderungen von Dokument Lösung Beziehungen und Mächtigkeit
Zuletzt geändert von Holger Engels am 2024/11/05 15:07
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,6 +1,7 @@ 1 1 1) Die Aussage ist falsch, da die Zahlen {{formula}}1, 4 \ \text{und} \ 9{{/formula}} in der Menge {{formula}}A{{/formula}} enthalten sind,aber nicht in {{formula}}B{{/formula}}. Somit gilt {{formula}}A\not\subset B{{/formula}}. 2 -2) Die Aussage ist falsch, da {{formula}}A\cup B\setminus B{{/formula}} keine der Zahlen enthält, die in der Menge {{formula}}B{{/formula}} enthalten sind, in {{formula}}B{{/formula}} jedoch Zahlen enthalten sind, die in {{formula}}A{{/formula}} enthalten sind. ({{formula}}A\cup B\setminus B={1,4,9} =A\setminusB{{/formula}},d.h. dieMenge enthält alle Zahlen die in {{formula}}A{{/formula}} und nicht in{{formula}}B{{/formula}}enthalten sind.)2 +2) Die Aussage ist falsch, da {{formula}}A\cup B\setminus B{{/formula}} keine der Zahlen enthält, die in der Menge {{formula}}B{{/formula}} enthalten sind, in {{formula}}B{{/formula}} jedoch Zahlen enthalten sind, die in {{formula}}A{{/formula}} enthalten sind. ({{formula}}A\cup B\setminus B=\{1,3,4,5,6,7,8, 9\}\setminus\{3,5,6,7,8\}=\{1,4,9\}=A\setminus B{{/formula}}) 3 3 3) Die Aussage ist richtig, da alle Zahlen, die in der Menge {{formula}}A{{/formula}} enthalten sind, natürliche Zahlen sind. Somit ist {{formula}}A{{/formula}} Teilmenge der natürlichen Zahlen. 4 -4) Die Aussage ist richtig, denn {{formula}}A\setminus B={1,4,9}{{/formula}} enthält 3 Elemente. 5 -5) Die Aussage ist richtig, da {{formula}}B \cap C={3}\subset \mathbb{Z}{{/formula}}. 6 -6) Die Aussage falsch, da {{formula}}\frac{1}{3}=\frac{2}{6}{{/formula}} sowohl in {{formula}}C{{/formula}} als auch in {{formula}}E{{/formula}} enthalten ist und demnach {{formula}}C \cap E ={\frac{1}{3}} \neq \emptyset{{/formula}} 4 +4) Die Aussage ist richtig, denn {{formula}}A\setminus B=\{1,4,9\}{{/formula}} enthält 3 Elemente. 5 +5) Die Aussage ist richtig, da {{formula}}B \cap C=\{3\}\subset \mathbb{Z}{{/formula}}. 6 +6) Die Aussage ist falsch, da {{formula}}\frac{1}{3}=\frac{2}{6}{{/formula}} sowohl in {{formula}}C{{/formula}} als auch in {{formula}}E{{/formula}} enthalten ist und demnach {{formula}}C \cap E =\{\frac{1}{3}\}\neq \emptyset{{/formula}}. 7 +