Änderungen von Dokument BPE 1.4 Lineare Funktionen
Zuletzt geändert von Holger Engels am 2024/11/20 21:57
Von Version 70.1
bearbeitet von Dirk Tebbe
am 2024/10/15 13:27
am 2024/10/15 13:27
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. dirktebbe1 +XWiki.fujan - Inhalt
-
... ... @@ -13,25 +13,23 @@ 13 13 [[Interaktive Erkunden>>https://kmap.eu/app/browser/Mathematik/Lineare%20Funktionen/Hauptform#erkunden]] 14 14 {{/lernende}} 15 15 16 -{{aufgabe id="Besondere Geraden" afb="I" kompetenzen="K 1, K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="4"}}16 +{{aufgabe id="Besondere Geraden" afb="I" kompetenzen="K4, K5" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 17 17 [[image:geraden.svg||style="float: right; width: 250px"]]Das Schaubild zeigt vier Geraden. Alle können als Gleichung ausgedrückt werden. Drei stellen auch einen funktionalen Zusammenhang dar. 18 18 19 -Gib jeweils eine Geradengleichung an. 19 +Gib jeweils eine Geradengleichungen und soweit möglich auch einen Funktionsterm an. 20 + 20 20 Begründe, warum die vierte Gerade nicht Graph einer Funktion sein kann. 21 21 {{/aufgabe}} 22 22 23 -{{aufgabe id="Taxifahrt" afb="I" kompetenzen="K3, K4, K5" quelle="Sabine Schäfer" cc="BY-SA" zeit="6"}} 24 +{{aufgabe id="Taxifahrt" afb="I" kompetenzen="K1, K4, K5" quelle="Sabine Schäfer" cc="BY-SA" zeit="5"}} 25 +Stelle folgende Situation grafisch dar und bestimme eine Gleichung, die den Sachverhalt ebenfalls beschreibt. 26 + 24 24 Für eine Taxifahrt fallen zunächst 5 Euro für die Anfahrt an. Dazu kommen pro angefangener gefahrener Minute 0,75 Euro. 25 -//Hinweis: Es werden Fahrten mit einer Dauer von bis zu 30 Minuten durchgeführt.// 26 - 27 -Stelle die oben beschriebene Situation grafisch dar. 28 -Bestimme eine Gleichung, die den Sachverhalt mathematisch beschreibt. 29 - 30 - 28 +Es werden Fahrten von 5 Minuten, 10 Minuten und 15 Minuten durchgeführt. 31 31 {{/aufgabe}} 32 32 33 -{{aufgabe id="Funktionsvorschriften zuordnen" afb="I" kompetenzen="K4, K5 , K6" quelle="Sabine Schäfer" cc="BY-SA" zeit="5"}}34 -[[image:sb geraden.png||style="float: right" width="400"]]Das Schaubild zeigt die Graphen von sechs verschiedenenlinearen Funktionen.Gib an,welche Funktionsvorschriftzu welcher Geradengehört. Begründe.31 +{{aufgabe id="Funktionsvorschriften zuordnen" afb="I" kompetenzen="K4, K5" quelle="Sabine Schäfer" cc="BY-SA" zeit="5"}} 32 +[[image:sb geraden.png||style="float: right" width="400"]]Das Schaubild zeigt die Graphen von linearen Funktionen. Ordne die folgenden Funktionsvorschriften begründet zu. 35 35 36 36 a) {{formula}}f\left(x\right)=x-1;x\in\mathbb{R} {{/formula}} 37 37 b) {{formula}}f\left(x\right)=1 - x^2;x\in\mathbb{R}{{/formula}} ... ... @@ -41,15 +41,11 @@ 41 41 f) {{formula}}f\left(x\right)=2 - 2x;x\in\mathbb{R}{{/formula}} 42 42 {{/aufgabe}} 43 43 44 -{{aufgabe id="Steigung" afb="III" kompetenzen="K3,K4,K5" zeit="8" quelle="Holger Engels" cc="BY-SA"}} 45 -Die Baldwin Street im North East Valley ist mit einer maximalen Steigung von 1 : 2,86 die steilste Straße der Welt. 46 - 47 -a) Stelle den Sachverhalt als Skizze dar. 48 -b) Gib die Steigung der Straße in Prozent an. 49 -c) Berechne den Steigungswinkel der Straße. 42 +{{aufgabe id="Steigung" afb="I" kompetenzen="" zeit="8" quelle="Holger Engels" cc="BY-SA"}} 43 +Die Baldwin Street im North East Valley ist mit einer maximalen Steigung von 1:2,86 die steilste Straße der Welt. Gib ihre Steigung in Prozent an und berechne den Steigungswinkel. 50 50 {{/aufgabe}} 51 51 52 -{{aufgabe id="Abstand Graph Koordinatenursprung" afb="II I" kompetenzen="K1,K2,K4,K5" zeit="8" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/grundlegend/2023_M_grundlege_7.pdf]]" niveau="g" tags="iqb" cc="BY"}}46 +{{aufgabe id="Abstand Graph Koordinatenursprung" afb="II" kompetenzen="K1,K2,K4,K5" zeit="8" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/grundlegend/2023_M_grundlege_7.pdf]]" niveau="g" tags="iqb" cc="BY"}} 53 53 [[image:Graph0,5x+5.PNG||width="220" style="float: right"]] 54 54 Die Abbildung zeigt den Graphen der in {{formula}}\mathbb{R}{{/formula}} definierten linearen Funktion {{formula}} f{{/formula}}. 55 55 (% style="list-style: alphastyle" %) ... ... @@ -58,15 +58,10 @@ 58 58 {{/aufgabe}} 59 59 60 60 {{aufgabe id="" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="5"}} 61 -Gegeben sind zwei lineare Funktionen f und g. 62 - 63 - 64 -(% style="list-style: alphastyle" %) 65 -{{formula}}f(x)=\frac{1}{2}x+1{{/formula}} 66 - 67 -[[image:Steigung.svg||width=300]] 68 - 69 69 Bestimme jeweils den Steigungswinkel und die Steigung in Prozent. 56 +(% style="list-style: alphastyle" %) 57 +1. {{formula}}g(x)=\frac{1}{2}x+1{{/formula}} 58 +1. [[image:Steigung.svg||width=300]] 70 70 {{/aufgabe}} 71 71 72 72 {{aufgabe id="" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="5"}} ... ... @@ -86,7 +86,7 @@ 86 86 87 87 {{aufgabe id="Ungleichung" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="5"}} 88 88 Kim rechnet folgendes .. 89 -{{formula}}-2x+1 > 0 \quad \,| -1{{/formula}}78 +{{formula}}-2x+1 > 0 \quad| -1{{/formula}} 90 90 {{formula}}\Leftrightarrow -2x > -1 \quad| :(-2){{/formula}} 91 91 {{formula}}\Leftrightarrow x > 2{{/formula}} 92 92 .. und stellt bei der Probe fest, dass irgendwas schief gelaufen sein muss. Erkläre!