Änderungen von Dokument BPE 1.5 Potenzen
Zuletzt geändert von Martin Rathgeb am 2024/12/11 09:44
Von Version 68.1
bearbeitet von Holger Engels
am 2024/10/15 14:57
am 2024/10/15 14:57
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.fujan - Inhalt
-
... ... @@ -35,34 +35,25 @@ 35 35 Erkläre {{formula}}\left(2^{1/2}\right)^2 = \left(\sqrt{2}\right)^{2} = 2{{/formula}} mithilfe des Potenzgesetzes {{formula}}\left(a^{n}\right)^{m} = a^{n\cdot m}{{/formula}}. 36 36 {{/aufgabe}} 37 37 38 -{{aufgabe id="Vereinfachen" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="6"}} 39 -Vereinfache mithilfe der Potenzgesetze: 40 -(% style="list-style: alphastyle" %) 38 +{{aufgabe id="Potenzgesetze" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 39 +Berechne mithilfe der Potenzgesetze: 41 41 1. {{formula}}\left(2^{3}\right)^{2}{{/formula}} 42 -1. {{formula}}\( (8^{2/3}\cdot 4^{1/2})/(2^{5/3})\){{/formula}}41 +1. {{formula}}\(6b^6\):\(3b^3\){{/formula}} 43 43 1. {{formula}}2^x\cdot2^{3-x}{{/formula}} 44 -1. {{formula}}\frac{1}{8}\cdot2^{3+x}{{/formula}} 45 -1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}{{/formula}} 46 46 {{/aufgabe}} 47 47 48 48 {{aufgabe id="Lücken" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 49 49 Fülle die Lücken aus: 50 -(% style="list-style: alphastyle" %) 51 -1. {{formula}}x^2\cdot x^\square=x^5{{/formula}} 52 -1. {{formula}}x^\square=\left(\frac{1}{x}\right)^2\cdot x^{-1} {{/formula}} 53 -1. {{formula}}x^{27}=\left(x^{-3}\right)^\square{{/formula}} 47 +1. {{formula}}x^2\cdot x^\square=x^5{{/formula}}\\ 48 +1. {{formula}}x^\square=\left(\frac{1}{x}\right)^2\cdot x^{-1} {{/formula}}\\ 49 +1. {{formula}}x^{27}=\left(x^{-3}\right)^\square{{/formula}}\\ 54 54 1. {{formula}}\left(\frac{x^\square}{x^{1/3}}\right)^7=x^5{{/formula}} 55 55 {{/aufgabe}} 56 56 57 -{{aufgabe id="Potenz und Wurzel" afb="I" kompetenzen="K4" quelle="Martin Rathgeb, Holger Engels" cc="BY-SA" zeit="4"}} 58 -(% style="display: inline-block; margin-right: 24px" %) 59 -(((Schreibe als Wurzel: 60 -{{formula}}a^{\frac{1}{2}}{{/formula}} 61 -{{formula}}a^{\frac{3}{2}}{{/formula}}))) 62 -(% style="display: inline-block" %) 63 -(((Schreibe als Potenz: 64 -{{formula}}\sqrt[3]{a}{{/formula}} 65 -{{formula}}\sqrt[3]{a^2}{{/formula}}))) 53 +{{aufgabe id="Vereinfachen" afb="I" kompetenzen="" quelle="Holger Engels" cc="BY-SA" zeit="4"}} 54 +Vereinfache unter Zuhilfenahme der Potenzgesetze 55 +1. {{formula}}\frac14\cdot2^{a+2}{{/formula}} 56 +1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}{{/formula}} 66 66 {{/aufgabe}} 67 67 68 68 {{aufgabe id="Pythagoreisches Tripel" afb="II" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA" zeit="40"}} ... ... @@ -87,17 +87,12 @@ 87 87 Zeige, wie man mit Hilfe rationaler Exponenten Wurzeln darstellen kann (z.B. {{formula}}\sqrt[3]{a}\{{/formula}} als {{formula}}\(a^{1/3}\){{/formula}}). 88 88 Berechne die dritte Wurzel von 27 und die vierte Wurzel von 81, indem du rationale Exponenten verwendest. 89 89 ))) 90 -{{/aufgabe}} 91 91 92 - {{aufgabe id="Rationale Potenzen-komplexe Ausdrücke vereinfachen" afb="I" kompetenzen="" quelle="Ronja Franke, Katharina Schneider" cc="BY-SA" zeit="15"}}82 + 93 93 1. (((**Komplexere Ausdrücke** 94 -Vereinfache die Ausdrücke 95 -a) {{formula}}\((8^{2/3} \cdot 4^{1/2}) / (2^{5/3})\){{/formula}} 96 -b) {{formula}}\((7^{1/3} \cdot 7^{1/4}) / (3^{7/12})\){{/formula}} 97 -mit Hilfe der Potenzgesetze. Gib die verwendeten Potenzgesetze an. 84 +Vereinfache den Ausdruck {{formula}}\((8^{2/3} \cdot 4^{1/2}) / (2^{5/3})\){{/formula}} mit Hilfe der Potenzgesetze. Gib die verwendeten Potenzgesetze an. 98 98 ))) 99 99 1. (((**Transfer** 100 100 Entwickle eine eigene Aufgabe zu rationalen Exponenten und stelle sie einem Mitschüler. Löse die Aufgabe selbst und prüfe, ob dein Mitschüler zu demselben Ergebnis kommt. 101 101 ))) 102 102 {{/aufgabe}} 103 -