Wiki-Quellcode von Lösung Vereinfachen
Version 9.1 von Holger Engels am 2024/10/15 14:14
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | 1. {{formula}}\left(2^{3}\right)^{2}=2^{3\cdot2}=2^{6}=64{{/formula}} | ||
2 | 1. {{formula}}\left(6b^6\right):\left(3b^3\right)=\frac{6b^6}{3b^3}=\frac{2 \cdot 3}{3}\cdot b^{6-3}=2 \cdot b^{3}{{/formula}} | ||
3 | 1. {{formula}}2^x\cdot2^{3-x}=2^{x+(3-x)}=2^3=8{{/formula}} | ||
4 | 1. {{formula}}\frac{1}{8}\cdot2^{3+x}=2^x{{/formula}} | ||
5 | 1. {{formula}}\frac{x^{2u}\cdot x^{a-u}}{x^u}=\frac{x^{2u}\cdot x^{a}\cdot x^{-u}}{x^u}=\frac{x^{2u}\cdot x^{a}}{x^u\cdot x^{+u}}=\frac{x^{2u}\cdot x^{a}}{x^{2u}}=x^{a}{{/formula}} |