Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 148.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 157.2
bearbeitet von Martin Rathgeb
am 2025/01/07 00:36
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -5,9 +5,12 @@
5 5  (% class="border slim" %)
6 6  |[[image:Po-ShenLoh_Quadratic.png||width="600px"]]
7 7  
8 -//Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er die Methode zur Lösung quadratischer Gleichungen vor.
8 +//Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor.
9 9  (% class="border slim" %)
10 -|[[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]]
10 +|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}
11 +
12 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln.
13 +
11 11  (% class="abc" %)
12 12  1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung.
13 13  1. {{formula}}f(x)=x^2-7x+12{{/formula}}
... ... @@ -23,12 +23,11 @@
23 23  {{/aufgabe}}
24 24  
25 25  {{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}}
26 -IN PROGRESS
27 27  (% class="abc" %)
28 28  1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken.
29 29  (% class="border slim" %)
30 30  | |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} |
31 -|{{formula}}y=\square (x-1)(x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KoorSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
33 +|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
32 32  | |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} |
33 33  
34 34  )))