Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 160.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:56
am 2025/01/07 00:56
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 163.1
bearbeitet von Martin Rathgeb
am 2025/01/07 01:14
am 2025/01/07 01:14
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,32 +1,5 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Darstellungswechsel nach Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 4 -Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel liefern Funktionsgraphen mit Parabelgleichung in Scheitelform. Ausmultiplizieren liefert die zugehörige Hauptform, das ist zumeist eine //Linearkombination// der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur Produktform ist schwieriger. 5 - 6 -//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 7 -(% class="border slim" %) 8 -|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 9 - 10 -//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 11 -(% class="border slim" %) 12 -|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 13 - 14 -//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 15 - 16 -(% class="abc" %) 17 -1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung. 18 -1. {{formula}}f(x)=x^2-7x+12{{/formula}} 19 -1. {{formula}}f(x)=x^2-14x+22{{/formula}} 20 -1. {{formula}}f(x)=x^2-7x+12{{/formula}} 21 -1. {{formula}}f(x)=x^2-8x+13{{/formula}} 22 -1. {{formula}}f(x)=x^2+6x-4{{/formula}} 23 -1. {{formula}}f(x)=2x^2-4x-5 {{/formula}} 24 - 25 -))) 26 -1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 27 -//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 28 -{{/aufgabe}} 29 - 30 30 {{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 31 31 (% class="abc" %) 32 32 1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. ... ... @@ -49,6 +49,47 @@ 49 49 ))) 50 50 {{/aufgabe}} 51 51 25 +{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 26 +In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 27 +(% class="border slim" %) 28 +|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 29 +|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 30 +|Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 31 +|Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 32 + 33 +Die //Normalparabel// ist Funktionsgraph //der// quadratischen Potenzfunktion ({{formula}}y=x^2{{/formula}}). Ihre //Transformationen// (vgl. Merkhilfe, S. 4) liefern Funktionsgraphen mit Parabelgleichung in //Scheitelform//. Ausmultiplizieren liefert die zugehörige //Hauptform//, das ist zumeist eine //Linearkombination// der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2). Der Darstellungswechsel zur //Produktform// ist schwieriger, aber auf verschiedene Weisen zugänglich. Wir folgen hier dem Darstellungswechsel nach //Po-Shen Loh//. 34 + 35 +//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 36 +(% class="border slim" %) 37 +|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 38 + 39 +//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 40 +(% class="border slim" %) 41 +|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 42 + 43 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 44 + 45 +(% class="abc" %) 46 +1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. 47 +1. {{formula}}y=x^2-7x+12{{/formula}} 48 +1. {{formula}}y=x^2-14x+22{{/formula}} 49 +1. {{formula}}y=x^2-7x+12{{/formula}} 50 +1. {{formula}}y=x^2-8x+13{{/formula}} 51 +1. {{formula}}y=x^2+6x-4{{/formula}} 52 +1. {{formula}}y=2x^2-4x-5 {{/formula}} 53 + 54 +))) 55 +1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 56 +//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 57 +1. (((Begründe, dass gilt: 58 +i. {{formula}}x_S=\frac{p}{2}{{/formula}} 59 +ii. {{formula}}x_S=\frac{b}{2a}{{/formula}} 60 +iii. {{formula}}x_S=\frac{x_1+x_2}{2}{{/formula}} 61 +iv. {{formula}}y_S=f(x_S){{/formula}} 62 +))) 63 +1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen. 64 +{{/aufgabe}} 65 + 52 52 {{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 53 53 IN PROGRESS 54 54 In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3.