Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 80.1
bearbeitet von Dirk Tebbe
am 2024/11/14 16:24
am 2024/11/14 16:24
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 100.1
bearbeitet von Martin Rathgeb
am 2025/01/05 00:43
am 2025/01/05 00:43
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
-
Objekte (0 geändert, 2 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. dirktebbe1 +XWiki.martinrathgeb - Inhalt
-
... ... @@ -1,29 +1,22 @@ 1 1 {{seiteninhalt/}} 2 2 3 3 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 4 -Kay legt täglich den Weg vom Bahnhof zur Schule zurück. Er kennt aus der Physik die Formel: {{formula}}v= \frac{s}{t}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in m/sec). Er weiß, dass die Schule vom Bahnhof 1 km entfernt liegt und er bei gemütlichem Gehen 15 Minuten braucht. 5 - 6 - 7 - (% style="width:min-content" %) 8 -|=t [min]|1|2|5|10|15 9 -|=v [m/s]||||| 10 - 4 +Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 11 11 12 -(% style="list-style: alphastyle" %) 13 -1. Berechne die mittlere Geschwindigkeit von Paul auf seinem Schulweg. 14 -1. Manchmal läuft Paul schneller, manchmal langsamer. Ergänze die obige Tabelle, in welcher der Zusammenhang zwischen Zeit und Geschwindigkeit dargestellt wird. 15 -1. Stelle die von dir ausgefüllte Tabelle in einem Koordinatensystem graphisch dar. 16 - 17 -1. Paul trägt an einem Morgen seine Sportuhr. Diese zeigt ihm als Tempo 8 min/km an. Welcher Geschwindigkeit entspricht diese Anzeige? 6 +(% class="abc" %) 7 +1. Erstelle die Funktion {{formula}}t{{/formula}}, die die benötigte Zeit in Minuten in Abhängigkeit von der Geschwindigkeit {{formula}}v{{/formula}} in km/h beschreibt. 8 +1. Bestimme die Definitionslücke der Funktion {{formula}}t{{/formula}}. 9 +1. Erläutere, warum es in diesem Kontext sinnvoll ist, eine Definitionslücke zu haben. 10 +1. Zeichne den Graphen der Funktion {{formula}}t{{/formula}} und markiere die Definitionslücke. 18 18 {{/aufgabe}} 19 19 20 20 {{aufgabe id="Potenzgleichungen lösen - graphisch und rechnerisch" afb="II" zeit="15" kompetenzen="K4,K5" quelle="Martin Stern, Niklas Wunder" cc="BY-SA"}} 21 21 Gegeben sind die Funktionen //f// und //g// mit den Funktionsgleichungen {{formula}}f(x)=\sqrt{-x+1}{{/formula}} und {{formula}} g(x)=-\sqrt{x+5}+3 {{/formula}}. 22 22 23 -(% style="list-style:alphastyle" %)16 +(% class="abc" %) 24 24 1. Gib jeweils die maximale Defintionsmenge und den zugehörigen Wertebereich an. 25 25 1. Zeichne die Funktionsgraphen zu den Funktionen in ein gemeinsammes Koordinatensystem im Intervall {{formula}}[-6; +2]{{/formula}}. 26 -1. Bestimme die Lösungen der Wurzelgleichung {{formula}} \sqrt{-x+1}=-\sqrt{x+5}+3{{/formula}} graphisch.19 +1. Bestimme die Lösungen der Wurzelgleichung {{formula}}f(x) = g(x){{/formula}} graphisch. 27 27 1. Berechne die Lösungen und vergleiche deine berechneten Lösungen mit den graphischen Lösungen aus c). 28 28 {{/aufgabe}} 29 29 ... ... @@ -67,4 +67,21 @@ 67 67 {{/lehrende}} 68 68 {{/aufgabe}} 69 69 63 + 64 +{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}} 65 +Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben der Verschiebung und der Streckung in Richtung einer Koordinatenachse bzw. der Spiegelung an einer Koordinatenachse gibt es eine weitere besondere Transformation, nämlich die //Spiegelung an der ersten Winkelhalbierenden//, das ist die Gerade mit der Gleichung {{formula}}y=x{{/formula}}. Diese Spiegelung bewirkt den Koordinatentausch {{formula}}(x|y)\mapsto (y|x){{/formula}}, d.h., die Umkehrung {{formula}}y\mapsto x{{/formula}} der Zuordnung {{formula}}x\mapsto y{{/formula}}. 66 + 67 + 68 +Betrachten wir dafür zunächst ein Beispiel, nämlich die Gleichung {{formula}}y=x^2{{/formula}}. Um daraus die Gleichung für die Umkehrung rechnerisch zu ermitteln, löst man nach //x// auf, d.h.: {{formula}}x=\pm \sqrt{y}{{/formula}}. 69 +Vertausche //x// und //y// miteinander um die Gleichung der Umkehrung zu erhalten. 70 + 71 +Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Graphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}. 72 +[[image:Einheitsuebergreifend2.png||width="400px"]] 73 +(% class="abc" %) 74 +1. Löse die Gleichung jeweils nach //x// auf; du erhältst damit für //x// einen Funktionsterm in //y//. 75 +1. Zeichne die Graphen der Umkehrungen ins Koordinatensystem ein und untersuche, wie sie zur ersten Winkelhalbierenden liegen. 76 +1. Die in a) berechneten Terme sind die Funktionsterme der Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}) der Funktionen {{formula}}f{{/formula}}. Untersuche jeweils den Ausdruck {{formula}}f^{-1}(y){{/formula}}, in dem du {{formula}}f(x){{/formula}} für //y// einsetzt und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt. 77 +1. Abschließend stellt sich die Frage: Warum muss der Definitionsbereich der Funktion //f// verkleinert werden, wenn die Umkehrfunktion berechnet wird? Begründe diese Einschränkung mit den Ergebnissen aus a) und b). 78 +{{/aufgabe}} 79 + 70 70 {{matrix/}}
- Einheitsuebergreifend2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.niklaswunder - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +22.7 KB - Inhalt
- XWiki.XWikiComments[0]
-
- Autor
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.dirktebbe - Datum
-
... ... @@ -1,0 +1,1 @@ 1 +2024-11-15 09:31:25.560
- XWiki.XWikiComments[1]
-
- Autor
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.dirktebbe - Kommentar
-
... ... @@ -1,0 +1,1 @@ 1 +Bei der Aufgabe "Weg zur Schule" ist die Anwendungssituation mit Zeit gegen null wenig sinnvoll. Es entstehen dabei Geh-Geschwindigkeiten, die von Menschen nicht machbar sind. Zudem trifft der Begriff Definitionslücke nicht zu. Es geht vielmehr um ein offenes Intervall von null bis unendlich. Der Versuch die Aufgabe zu überarbeiten ist mir nicht gelungen. In Rücksprache mit weiteren Gruppenmitgliedern nehme ich die Aufgabe vorläufig aus dem Arbeitsheft. - Datum
-
... ... @@ -1,0 +1,1 @@ 1 +2024-11-15 09:38:04.365