Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 84.3
bearbeitet von Dirk Tebbe
am 2024/11/15 09:38
am 2024/11/15 09:38
Änderungskommentar:
Kommentar hinzugefügt
Auf Version 85.1
bearbeitet von Holger Engels
am 2024/12/17 21:00
am 2024/12/17 21:00
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. dirktebbe1 +XWiki.holgerengels - Inhalt
-
... ... @@ -60,4 +60,28 @@ 60 60 {{/lehrende}} 61 61 {{/aufgabe}} 62 62 63 +{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder" zeit="12" cc="BY-SA"}} 64 +Neben der Spiegelung an der x- und y- Achse kann man auch an der ersten Winkelhalbierenden (gegeben durch y=x) einen Funktionsgraphen spiegeln. Für alle Funktionen schränkt man den Definitionsbereich auf {{formula}}x> 0{{/formula}} ein. Wieso dies sinnvoll ist wird später klar. Um die Funktionsgleichung nach Spiegelung rechnerisch zu ermitteln nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man den gespiegelten Funktionsgraphen mit passender Funktionsgleichung. 65 + 66 +{{formula}} 67 +\begin{align*} 68 +y=x^2 \;\; | \,\sqrt{\phantomtext}\\ 69 +x=\sqrt{y}\;\; 70 +{{/formula}} 71 +Vertausche x und y miteinander um die Funktionsgleichung des gespiegelten Funktionsgraphens zu erhalten. 72 +{{formula}} 73 +y=\sqrt{x} 74 +\end{align*} 75 +{{/formula}} 76 + 77 +(% class="abc" %) 78 +1. Bestimme die an der ersten Winkelhabierenden gespiegelten Funktionen {{formula}} f(x)=\frac{1}{x}; g(x)= \frac{1}{x^2} {{/formula}} und {{formula}} h(x)= \frac{2\,x+3}{-4\,x-2}{{/formula}}. Hinweis: {{formula}}x >0{{/formula}} 79 +1. Bestimme graphisch den an der ersten Winkelhalbierenden gespiegelten Graphen zu den drei dargestellten Graphen. 80 +1. Die in a) berechneten Funktionen nennt man auch Umkehrfunktionen (Abkürzung {{formula}} f^{-1}{{/formula}} ) . Berechne den Funktionsterm {{formula}} f^{-1}(f(x)){{/formula}}. Beschreibe deine Beobachtung. Hinweis: Setze dazu den Term der Funktionsgleichung {{formula}}f(x){{/formula}} in die in a) berechnete Umkehrfunktion {{formula}} f^{-1}{{/formula}} ein und fasse zusammen. 81 +1. Begründe mit Hilfe deiner Lösungen von a) und b) wieso der Definitionsbereich der Funktion {{formula}} f 82 +{{/formula}} verkleinert werden muss, wenn man die Funktionsgleichung der Umkehrfunktion berechnet. 83 + 84 +[[image:Einheitsuebergreifend2.png||width="400px"]] 85 +{{/aufgabe}} 86 + 63 63 {{matrix/}}