Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 85.1
bearbeitet von Holger Engels
am 2024/12/17 21:00
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 88.1
bearbeitet von Martin Rathgeb
am 2024/12/23 00:56
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.martinrathgeb
Inhalt
... ... @@ -60,7 +60,32 @@
60 60  {{/lehrende}}
61 61  {{/aufgabe}}
62 62  
63 -{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder" zeit="12" cc="BY-SA"}}
63 +
64 +{{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}}
65 +Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben Verschiebungen, Streckungen und Spiegelungen an den Achsen gibt es eine besondere Transformation, die in ihrer Bedeutung oft übersehen wird: die Spiegelung an der ersten Winkelhalbierenden, d.h., an der Geraden mit Gleichung {{formula}}y=x{{/formula}}. Diese Transformation ist weit mehr als eine Spielerei, denn sie führt direkt zur Bestimmung der Umkehrfunktion einer gegebenen Funktion.
66 +
67 +Betrachten wir dafür zunächst ein Beispiel. Für alle Funktionen schränkt man den Definitionsbereich auf {{formula}}x> 0{{/formula}} ein. Wieso dies sinnvoll ist wird später klar. Um die Funktionsgleichung nach Spiegelung rechnerisch zu ermitteln nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man den gespiegelten Funktionsgraphen mit passender Funktionsgleichung.
68 +
69 +{{formula}}
70 +\begin{align*}
71 +y=x^2 \;\; | \,\sqrt{\phantomtext}\\
72 +x=\sqrt{y}\;\;
73 +{{/formula}}
74 +Vertausche x und y miteinander um die Funktionsgleichung des gespiegelten Funktionsgraphens zu erhalten.
75 +{{formula}}
76 +y=\sqrt{x}
77 +\end{align*}
78 +{{/formula}}
79 +
80 +(% class="abc" %)
81 +1. Bestimme nun die an der ersten Winkelhalbierenden gespiegelten Funktionen für folgende Beispiele: (i) {{formula}}f(x)=2x{{/formula}}, (ii) {{formula}}g(x)=(x+1)^2{{/formula}}, (iii) {{formula}}h(x)=x^3{{/formula}}.
82 +1. Zeichne außerdem die gespiegelten Graphen und überprüfe, wie sich diese zur Winkelhalbierenden verhalten.
83 +1. Die in a) berechneten Funktionen nennt man Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}). Untersuche den Ausdruck {{formula}}f^{-1}(y){{/formula}} für {{formula}}y=f(x){{/formula}} und beschreibe, was dir auffällt.
84 +1. Abschließend stellt sich die Frage: Warum muss der Definitionsbereich der Funktion //f// verkleinert werden, wenn die Umkehrfunktion berechnet wird? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
85 +[[image:Einheitsuebergreifend2.png||width="400px"]]
86 +{{/aufgabe}}
87 +
88 +{{aufgabe id="Spiegeln an der Winkelhalbierenden (alt)" afb="III" kompetenzen="K4" quelle="Niklas Wunder" zeit="12" cc="BY-SA"}}
64 64  Neben der Spiegelung an der x- und y- Achse kann man auch an der ersten Winkelhalbierenden (gegeben durch y=x) einen Funktionsgraphen spiegeln. Für alle Funktionen schränkt man den Definitionsbereich auf {{formula}}x> 0{{/formula}} ein. Wieso dies sinnvoll ist wird später klar. Um die Funktionsgleichung nach Spiegelung rechnerisch zu ermitteln nimmt man die Funktionsgleichung, z.B. {{formula}} y=x^2{{/formula}}, löst diese nach x auf und vertauscht anschließend die Variablen so erhält man den gespiegelten Funktionsgraphen mit passender Funktionsgleichung.
65 65  
66 66  {{formula}}
Einheitsuebergreifend2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.niklaswunder
Größe
... ... @@ -1,0 +1,1 @@
1 +22.7 KB
Inhalt